Skip to main content

Navigation

  • Chapter
  • 22 Accesses

Part of the book series: Forschungsberichte des Landes Nordrhein-Westfalen ((FOLANW,volume 1258))

Zusammenfassung

Verschiedene technische Forderungen und Beschränkungen machen es erforderlich, den Flugablauf von Raumfahrzeugen bei der Erfüllung einer Mission auf lange Sicht zu planen und ein Flugprogramm für das Lenksystem herzustellen. Diesen Vorgang nennt man Navigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albright, N. W., The Transformation of Earth — Referenced Data to Inertial Coordinate Systems, Jet Propulsion Lab., Pasadena, Cal., Progress-Report No. 30–5, 1959.

    Google Scholar 

  2. Altmann, S. P., und J. S. Pistinger, Hodograph Analysis of the Orbital Transfer Problem for Coplanar Nonaligned Elliptical Orbits, J. ARS, 31 (9), 1961.

    Google Scholar 

  3. Arthur, P. D., und H. K. Karrenberg, Simple Method for Approximation of the Characteristics of Low Thrust Trajectories, J. ARS, 30 (7), 1960.

    Google Scholar 

  4. Au, G., Interplanetare Bahnen mit kleiner Schubbeschleunigung, Raketentechnik und Raumfahrtforschung, 5 (2), 1961.

    Google Scholar 

  5. Baker, R. M. L., Application of Astronomical Perturbation Techniques to the Return of Space Vehicles, Jet Propulsion, 29 (3), 1959.

    Google Scholar 

  6. Baker, R. M. L., Accuracy Required for a Return from Interplanetary Voyages, J. BIS, 17 (3/4), 1959/60.

    Google Scholar 

  7. Baker, R. M. L., G. B. Westrom, C. B. Hilton, R. H. Gersten, J. L. Arsenault, und E. J. Browne, Efficient Precision Orbit Computation Techniques, J. ARS, 30 (8), 1960.

    Google Scholar 

  8. Battin, R. H., A Comparison of Fixed and Variable Time of Arrival Navigation for Interplanetary Flight, Massachusetts Institute of Techniques, Mai 1960, A STIA AD — 242 862.

    Google Scholar 

  9. Battik, R. H., und J. H. Lanning, A Navigation Theory for Round Trip Recounaissance Missions for Venus and Mars, 4 Sympos. on Ball. Missiles and Space Technology, 24.-27. Aug. 1957, UCLA, Los Angeles.

    Google Scholar 

  10. Bennet, D. J., Escape from a circular Orbit Using Tangentical Thrust, Jet Propulsion, 28 (3), 1958.

    Google Scholar 

  11. Boyd, B., Motion Units for Simplify Space Travel Computations, J. ARS, 29 (3), 1959.

    Google Scholar 

  12. Breakwell, J. V., Approximations in Flight Optimization Problems, Aerospace Eng., 20 (9), I, 1961.

    Google Scholar 

  13. Breakwell, J. V., Gillespie und Ross, Researches in Interplanetary Transfer, J. ARS, 31 (2), 1961.

    Google Scholar 

  14. Brown, H., und J. R. Nelson, Thrust Orientation Patterns for Orbit Adjustment of Low Thrust Vehicles, J. ARS, 30 (7), 1960.

    Google Scholar 

  15. Cap, F., Die Anwendung der Gröbnerschen Methode zur Lösung von Differentialgleichungen des astronautischen n-Körper-Problems, Proc. IX. Internat. Astronaut. Congress, Wien 1959, Springer.

    Google Scholar 

  16. Clarke, V. C. jr., Design of Lunar and Interplanetary Ascent Trajectories, Jet Propulsion Lab., 26. 7. 1960, ASTIA AD — 246 430.

    Google Scholar 

  17. Cole, D. M., Times Required for Continous Thrust Earth Moon Trips, J. ARS, 27 (4), 1957.

    Google Scholar 

  18. Copland, H., Interplanetary Trajectory under Low Thrust Radial Acceleration, J. ARS, 29 (4), 1959.

    Google Scholar 

  19. Cornog, R., Selected Problems in Interstellar Navigation. Institute of Navigation, 7 (2 + 3), 1960.

    Google Scholar 

  20. Crocco, G. A., One Year Exploration Trip Earth—Mars—Venus—Earth, Prod. 7. Intern. Astronaut. Congr., Wien 1957, Springer.

    Google Scholar 

  21. Don Gray, J., Drag and Stability Derivatives of Missile Components According to the Modified Newtonian Theory, ASTIA AD — 246 085, 1960.

    Google Scholar 

  22. Dobranravov, V., Kosmische Navigation, Naukai Zhizu, 23 (10) 1956, (russisch).

    Google Scholar 

  23. Dugan, J. F. jr., Analysis of Trajectory Parameters for Probe and Round-TripMissions to Mars, NASA TN D — 281, 1960.

    Google Scholar 

  24. Eggleston, J. M., Optimum Time to Rendezvous, J. ARS, 30 (11), 1960.

    Google Scholar 

  25. Ehricke, K. A., Space Flight, Princetown, N. J., 1960, Van Norstrand Comp., Inc.

    Google Scholar 

  26. Ehricke, K. A., Take-off from Satellite Orbits, J. ARS, 23 (6), 1953.

    Google Scholar 

  27. Ehricke, K. A., Zur Auswahl von Flugbahnen für bemannte Raumfahrzeuge zu den Planeten Mars und Venus, Raketentechnik und Raumfahrtforschung, 4 (1), 1960.

    Google Scholar 

  28. Ehricke, K. A., Interplanetary Probes, Astronautics, Jan. 1959.

    Google Scholar 

  29. Ehricke, K. A., Error Analysis at Keplerian Flights Involving Single Central Force Field between two Central Force Fields, Navigation, 6 (1), 1956.

    Google Scholar 

  30. Forbes, G. F., The Trajectory of a Powered Rocket in Space, J. BIS, 9 (2), 1950.

    Google Scholar 

  31. Fox, R. H., Powered Trajectory Studies for Low Thrust Space Vehicles, ARS Paper, 879–59, New York 1959.

    Google Scholar 

  32. Fried, B. D., Trajectory Optimization Problems, in: Seifert, Space Technology, New York 1959, John Wiley and Sons, Inc.

    Google Scholar 

  33. Fried, B. D., On the Powered Flight Trajectory of an Earth Satellite, J. ARS, 27 (6), 1957.

    Google Scholar 

  34. Gravalos, P. G., A Method of Integrating the Equations of Motion of a Body Entering an Arbitrary Atmosphere with an Automatic Error Analysis, Proc. VIII. Internat. Astr. Congr., Wien 1957, Springer.

    Google Scholar 

  35. Greenwood, S. W., Solar Sailing — Practical Problems, Jet Propulsion, 28 (11), 1958.

    Google Scholar 

  36. Greenwood, S. W., Minimum Energy Entry into Orbits Around Mercury, J. BIS, 18 (4), 1961.

    Google Scholar 

  37. Gröbner, W., und F. Cap, The Three-Body Problem Earth — Moon — Spaceship, Astronautica Acta, Vol. V, Fasc. 5, 1959.

    Google Scholar 

  38. Harcrow, H. W., Optimum Trajectory of n-Stage-Missiles, J. BIS, 18 (2) 1961.

    Google Scholar 

  39. Harry, D. P., und A. L. Friedlander, An Analysis of Errors and Requierements for Optical Guidance Technique for Approaches to Atmosphere Entry with Interplanetary Vehicles, NASA TR — 102, 1961.

    Google Scholar 

  40. Herricx, S., R. M. L. Baker und C. G. Hilton, Gravitational and Related Constants for Accurate Space Navigation, Proc. VIII. Int. Astronaut. Congr., Wien 1957, Springer.

    Google Scholar 

  41. Himmel, S. C., J. F. Dugan, R. W. Luidens und R. F. Weber, A Study of Manned Nuclear — Rocket Missions to Mars, Aerospace Eng., 20 (7), 1961.

    Google Scholar 

  42. Hirrel, P. J., Control and Guidance of Electrically Propelled Spacecraft, Calif. Inst. Tech., JPL TR — 32–166, Sept. 1961.

    Google Scholar 

  43. Hohmann, W., The Attainability of Heavenly Bodies, NASA Technical Trans. No. F — 44, 1960. — ASTIA AD — 246 795 (Nachdruck von »Die Erreichbarkeit der Himmelskörper«, 1925 ).

    Google Scholar 

  44. Huang, Su-Situ, Very Restricted Four-Body Problem, NASA TND — 501, September 1960.

    Google Scholar 

  45. Hunter, M. W., W. B. Klempererund R. J. Gunkel, Impulsive Midcourse Correction of a Lunar Shot, Proc. IX. Int. Astronaut. Congr., Wien 1959, Springer.

    Google Scholar 

  46. Irving, J. H., und E. K. Blum, Comparative Performance of Ballistie and Low Thrust Vehicles for Flight to Mars, 2. Annual AFOSR Symposium, Denver 1958; Vistas in Astronautics, Vol. II, Pergamon Press, 1959.

    Google Scholar 

  47. Koelle, H. H. (ed.), Handbook of Astronautical Engineering, New York 1961, McGraw-Hill Book Comp., Inc.

    Google Scholar 

  48. Knothe, H., und R. H. Anderson, On Satellite Orbits, AFMDC — TR — 59–11, April 1959. — A STIA AD — 211 523.

    Google Scholar 

  49. Koor, J. M. J., On the Calculation of the Powered Flight of a long Range Rocket Superviset by an Automatic Pilot, Astronautica Acta, 1 (4), 1955.

    Google Scholar 

  50. Kosmodem’yanskill, A. A., General Theorems of the Mechanics of a Body of Variable Mass, Jzd. VVIV, 1946 (russisch).

    Google Scholar 

  51. Kosmodem’yanskii, A. A., Mechanics of Bodies of Variable Mass; Theory of Jet Propulsion, Jzd. VVIA, 1957 (russisch).

    Google Scholar 

  52. Krause, H. G. L., zum Problem: Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit und der Einfluß einer Änderung derselben auf die Bahnelemente, Weltraumfahrt, Heft 2, 1954.

    Google Scholar 

  53. Landolt-Börnstein, Zahlenwerte und Funktionen aus Astronomie und Geophysik, Heidelberg 1952, Springer.

    Google Scholar 

  54. Lass und Solloway, Method of a Satellite of the Moon, J. ARS, 31 (2), 1961.

    Google Scholar 

  55. Lawden, D. F., Optimal Intermediate-Thrust Areas in a Gravitational Field, Astronautica Acta, V III, 1962.

    Google Scholar 

  56. Lawden, D. F., Optimal Programming of Rocket Thrust Directions, Astronautica Acta, I, 1955.

    Google Scholar 

  57. Lawden, D. F., The Calculation of Orbits, J. BIS, 14 (4), 1955.

    Google Scholar 

  58. Lawden, D. F., Optimal Rocket Trajectories, J. ARS, 27 (12), 1957.

    Google Scholar 

  59. Lawden, D. F., Lagrange’s Equations for a System of Variable Mass, J. BIS, 6 (6), 1947.

    Google Scholar 

  60. Lawden, D. F., und R. S. Long, The Theory of Correctional Maneuvers in Interplanetary Space, Radiation Inc., Aug. 1960, ASTIA AD — 242 394.

    Google Scholar 

  61. Leger, R. M., Effects of Launching Time on Space Navigation, 7 (4), 1960.

    Google Scholar 

  62. Melbourne, W. G., Three-Dimensional Optimum Thrust Trajekties for Power Limited Propulsion Systems, J. Ars, 31, 1961.

    Google Scholar 

  63. Michielsen, H. F., The Case for the Low Acceleration Spaceship, Astronautica Acta, 3 (2), 1957.

    Google Scholar 

  64. Michielsen, H. F., Die Bahnbestimmung einer schwach beschleunigten Rakete in einem zentralen Schwerefeld, in: H. H. Koelle (ed.), Probleme der astronaut. Grundlagenforschung, 1952.

    Google Scholar 

  65. Michielsen, H. F., Fifth Harmonic of Earth’s Gravitational Field, J. ARS, 30 (10), 1960.

    Google Scholar 

  66. Micxelwarr, A. B., Lunar Trajectories, J. ARS, 29 (12) 1959.

    Google Scholar 

  67. Mickelwait, A. B., E. H. Timpeins und R. A. Park, Three Dimensional Interplanetary Trajectories, IRE Trans. MIL — 3, No. 4, 1959.

    Google Scholar 

  68. Miele, A., General Variational Theory of the Flight Paths of Rocket Powered Aircraft, Missiles and Satellite-Carriers, Proc. 9. Int. Astronaut. Congr., Vol. II, Wien 1959, Springer.

    Google Scholar 

  69. Miele, A., Optimum Burning Program as Related to Aerodynamic Heating for a Missile Traversing the Earth’s Atmosphere, J. ARS, 27 (10), 1957.

    Google Scholar 

  70. Miele, A., Interrelationship of Calculus of Variations and Ordinary Theory of Maxima and Minima for Flight Mechanies Application, J. Ars, 29 (1), 1959.

    Google Scholar 

  71. Miele, A., Generalized Variotional Approach to the Optimum Thrust Programming for the Vertical Flight of a Rocket, Z. Flugwissenschaft, März 1958.

    Google Scholar 

  72. Miele, A., Theorem of Image Trajectories in the Earth-Moon-Space, A STIA AD — 245 790, 1960.

    Google Scholar 

  73. Moeckel, W. E., Fast Interplanetary Missions with Law — Thrust Propulsion Systems, NASA TR R — 79, 1960.

    Google Scholar 

  74. Moeckel, W. E., Trajectories with Constant Tangential Thrust in Central Gravitational Field, NASA TRR — 53, 1959.

    Google Scholar 

  75. Moeckel, W. E., Interplanetary Trajectories for Elektrically Propelled Space Vehicles, Astronautica Acta, 7, 1961.

    Google Scholar 

  76. Ocnocimskij, D. E., und T. M. Eneev, Einige Variationsaufgaben zum Start eines künstlichen Erdsatelliten, USP. fiz. Nauk (Moskau), 63, 1957.

    Google Scholar 

  77. Paiewonsky, B., The Motion of an Orbiting Vehicle Subjected to Continuous Radial Thrust, Including a Study of Planetary Encaunters, Proc. X. Int. Astronaut. Congr., Vol. I, Wien 1960, Springer.

    Google Scholar 

  78. Pauson, W. M., Time Relationships for Interplanetary Trajectories, J. ARS, 31 (9), Sep. 1961.

    Google Scholar 

  79. Perkins, F. M., Flight Mechanics of Low — Thrust Spacecraft, in: Vistas in Astronautics, Vol. II, London 1959, Pergamon Press.

    Google Scholar 

  80. Petty, C. M., Interplanetary Maneuvers Using Radial Thrust, J. ARS, 31, 1961.

    Google Scholar 

  81. Rauschenbach, B. V., Some Guidance Problems in Interplanetary Space, J. ARS, 31, 1961.

    Google Scholar 

  82. Ridell, W. C., Launch Parameters for Interplanetary Flights, J. ARS, 30 (12), 1960.

    Google Scholar 

  83. Ridell, W. C., Initial Azimuths and Times for Ballistie Lunar Impact Trajectories, J. ARS, 30 (5), 1960.

    Google Scholar 

  84. Roberson, R. E., Impact Points of Ballistie Rockets, J. ARS, 27 (12), 1957.

    Google Scholar 

  85. Roberson, R. E., und D. Tatisrcheff, The Potential Energy of a Small Rigid Body in the Gravitational Field of an Oblate Spheroid, J. Franklin Inst., 262, 1956.

    Google Scholar 

  86. Rodrignez, E., A Method of Determining Steering Programs for Low Thrust Planetary Vehicles, ARS Paper 645–58, 1958.

    Google Scholar 

  87. Rodrignez, E., Method for Determing Steeringining Programs for Low Thrust Interplanetary Vehicles, J. ARS, 29 (10), 1959.

    Google Scholar 

  88. Roth, H. L., Transfer from an Arbitrary Initial Flight Condition to a Point Target, J. Aerospace Sci., 28 (9), 1961.

    Google Scholar 

  89. Ruppe, H. O., Einige Betrachtungen zur Theorie der Raumfahrzeugantriebe, Proc. VII Int. Astronaut. Congr., Wien 1957, Springer.

    Google Scholar 

  90. Ruppe, H. O., Satellite Technology and Space Navigation, ABMA Report No. DSP-TN-9–58, Sep. 1958.

    Google Scholar 

  91. Saltzer, C., und C. W. Fetheroff, A Direct Variotional Method for the Calenlation of Optimum Thrust Programs for Power — Limited Interplanetary Flight, Astronautica Acta, 7 (1), 1961.

    Google Scholar 

  92. Sänger, E., Bewegungsgesetze der Raumfahrt, Interavia, 4, 1949.

    Google Scholar 

  93. Sänger, E., Atlas konkreter Bahnen von Raketenflugzeugen bis zur Außenstation, Bericht No.3 derNordwestdeutschenGesellschaft fürWeltraumforschung e. V.,1951.

    Google Scholar 

  94. Schaub, W., Ein streng lösbarer Fall des Drei-Körper-Problems, Weltraumfahrt, Heft 3, 1957.

    Google Scholar 

  95. Schütte, K., Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit und der Einfluß einer Änderung derselben auf die Bahnelemente, Weltraumfahrt, Heft 4, 1953, und Heft 1, 1954.

    Google Scholar 

  96. Sinra, J., Interplanetary Navigation, Proc. X. Int. Astronaut. Congr., Vol. II, Wien 1960, Springer.

    Google Scholar 

  97. Stark, H. M., Optimal Trajectories Between Two Terminals in Space, J. ARS, 31 (2), 1961.

    Google Scholar 

  98. Stuhlinger, E., The Flight Path of an Electrically Propelled Space Ship, J. ARS, 27 (4), 1957.

    Google Scholar 

  99. Thirring, H., Der Einfluß der Eigenrotation der Planeten auf die Bewegung ihrer Trabanten, Physikal. Blätter, 5, 1958.

    Google Scholar 

  100. Traenkle, C. A., Design Parameters and Optimization of Missile Trajectories, Wadc Report 58–580, Astia AD — 204 805, 1958.

    Google Scholar 

  101. Tsien, H. S., Take-Off from Satellite Orbit, J. ARS, 23 (4), 1953.

    Google Scholar 

  102. Tsu, T. C., Interplanetary Travel by Solar Sail, J. ARS, 29 (6), 1959.

    Google Scholar 

  103. Unger, H. W., On the Mid-Course Navigation for Manned Interplanetary Space Flight, ABMA-Report, 28. 8. 1958, DSP — TR — 2–58.

    Google Scholar 

  104. Vertregt, M., Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit, Astronautica Acta, 4 (1), 1958.

    Google Scholar 

  105. Vinti, J. P., Mean Motion in Conditionally Periodic Separable Systems, ASTIA AD — 246 592, Nov. 1960.

    Google Scholar 

  106. Weiss, D. C., Maneuvering Technique for Changing the Plane of Circular Orbits With Minimum Full Expenditure, J. Aerospace Sci., 29 (3), 1962.

    Google Scholar 

  107. Wen, Li Shu, A Unified Treatment of »Variation of Parameters« and »Differential Expressions«, Method in Trajectory Prediction and Error Analysis, J. Aerospace Sci., 29 (1), 1962.

    Google Scholar 

  108. Wu, Ching-Sheng, Effect of Earth’s Oblateness on the Calenlation of the Impact Point of Ballistie Missiles J. ARS, 30 (12), 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Rößger, E., Zehle, H. (1963). Navigation. In: Grundlagen der Raumfahrzeugführung. Forschungsberichte des Landes Nordrhein-Westfalen, vol 1258. VS Verlag für Sozialwissenschaften, Wiesbaden. https://doi.org/10.1007/978-3-663-02530-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-02530-6_2

  • Publisher Name: VS Verlag für Sozialwissenschaften, Wiesbaden

  • Print ISBN: 978-3-663-00617-6

  • Online ISBN: 978-3-663-02530-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics