Skip to main content

Reverse Mathematics and Computability Theory of Domain Theory

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11541))

Abstract

This paper deals with the foundations of mathematics and computer science, domain theory in particular; the latter studies certain ordered sets, called domains, with close relations to topology. Conceptually speaking, domain theory provides a highly abstract and general formalisation of the intuitive notions ‘approximation’ and ‘convergence’. Thus, a major application in computer science is the semantics of programming languages. We study the following foundational questions:

  1. (Q1)

    Which axioms are needed to prove basic results in domain theory?

  2. (Q2)

    How hard it is to compute the objects in these basic results?

Clearly, (Q1) is part of the program Reverse Mathematics, while (Q2) is part of computability theory in the sense of Kleene. Our main result is that even very basic theorems in domain theory are extremely hard to prove, while the objects in these theorems are similarly extremely hard to compute; this hardness is measured relative to the usual hierarchy of comprehension axioms, namely one requires full second-order arithmetic in each case. By contrast, we show that the formalism of domain theory obviates the need for the Axiom of Choice, a foundational concern.

This research was supported by the John Templeton Foundation grant a new dawn of intuitionism with ID 60842. Opinions expressed in this paper do not necessarily reflect those of the John Templeton Foundation. See also Remark 4.7 below.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    By [27, Prop. 3.6], \({{\mathsf{RCA}}_{0}^{\omega }}\) can prove the global equivalence of sequential continuity and epsilon-delta continuity on Baire space, i.e. when those continuity properties hold everywhere on the latter.

  2. 2.

    Simpson mentions in [52] the caveat that e.g. \({\textsf {PRA}}\) and \({\textsf {WKL}}_{0}\) have the same first-order strength, but the latter is strictly stronger than the former.

  3. 3.

    There are some examples of theorems (predating \({\mathsf{HBU}}\) and [41]) that fall outside of the Gödel hierarchy based on inclusion, like special cases of Ramsey’s theorem and the axiom of determinacy from set theory [22, 32]. These are far less natural than e.g. Heine-Borel compactness, in our opinion.

  4. 4.

    To be absolutely clear, variables (of any finite type) are allowed in quantifier-free formulas of the language \({\textsf {\text {L}}}_{\omega }\): only quantifiers are banned.

References

  1. Abramsky, S., Jung, A.: Domain Theory. Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Oxford University Press (1994)

    Google Scholar 

  2. Avigad, J., Feferman, S.: Gödel’s Functional (“Dialectica”) Interpretation. Handbook of Proof Theory. Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 337–405 (1998)

    Google Scholar 

  3. Bartle, R.G.: Nets and filters in topology. Am. Math. Monthly 62, 551–557 (1955)

    Article  MathSciNet  Google Scholar 

  4. Benacerraf, P., Putnam, H.: Philosophy of Mathematics: Selected Readings, 2nd edn. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  5. Bernays, P.: Sur le Platonisme Dans les Mathé matiques. L’Enseignement Mathématique 34, 52–69 (1935)

    MATH  Google Scholar 

  6. Bourbaki, N.: Elements of Mathematics. General Topology. Part 2. Addison-Wesley, Boston (1966)

    MATH  Google Scholar 

  7. Brown, A., Pearcy, C.: An Introduction to Analysis. Graduate Texts in Mathematics, vol. 154. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4612-0787-0

    Book  MATH  Google Scholar 

  8. Burgess, J.P.: Fixing Frege. Princeton Monographs in Philosophy. Princeton University Press, Princeton (2005)

    Book  Google Scholar 

  9. Cousin, P.: Sur les fonctions de n variables complexes. Acta Math. 19, 1–61 (1895)

    Article  MathSciNet  Google Scholar 

  10. Dorais, F.G.: Classical consequences of continuous choice principles from intuitionistic analysis. Notre Dame J. Form. Log. 55(1), 25–39 (2014)

    Article  MathSciNet  Google Scholar 

  11. Dorais, F.G., Dzhafarov, D.D., Hirst, J.L., Mileti, J.R., Shafer, P.: On uniform relationships between combinatorial problems. Trans. Am. Math. Soc. 368(2), 1321–1359 (2016)

    Article  MathSciNet  Google Scholar 

  12. Felgner, U.: Models of ZF-Set Theory. LNM, vol. 223. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0061160

    Book  MATH  Google Scholar 

  13. Friedman, H.: Some systems of second order arithmetic and their use. In: Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), vol. 1, pp. 235–242 (1975)

    Google Scholar 

  14. Friedman, H.: Systems of second order arithmetic with restricted induction, I & II (Abstracts). J. Symb. Log. 41, 557–559 (1976)

    Article  Google Scholar 

  15. Friedman, H.: Interpretations, According to Tarski. Interpretations of Set Theory in Discrete Mathematics and Informal Thinking, The Nineteenth Annual Tarski Lectures, vol. 1, p. 42 (2007). http://u.osu.edu/friedman.8/files/2014/01/Tarski1052407-13do0b2.pdf

  16. Fujiwara, M., Yokoyama, K.: A note on the sequential version of \({\varPi ^1_2}\) statements. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 171–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1_20

    Chapter  MATH  Google Scholar 

  17. Fujiwara, M., Higuchi, K., Kihara, T.: On the strength of marriage theorems and uniformity. MLQ Math. Log. Q. 60(3), 136–153 (2014)

    Article  MathSciNet  Google Scholar 

  18. Gandy, R.: General recursive functionals of finite type and hierarchies of functions. Ann. Fac. Sci. Univ. Clermont-Ferrand 35, 5–24 (1967)

    MathSciNet  Google Scholar 

  19. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer, Heidelberg (1980). https://doi.org/10.1007/978-3-642-67678-9

    Book  MATH  Google Scholar 

  20. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press (2003)

    Google Scholar 

  21. Goubault-Larrecq, J.: Non-Hausdorff Topology and Domain Theory. New Mathematical Monographs, vol. 22. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  22. Hirschfeldt, D.R.: Slicing the Truth. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 28. World Scientific Publishing (2015)

    Google Scholar 

  23. Hirst, J.L., Mummert, C.: Reverse mathematics and uniformity in proofs without excluded middle. Notre Dame J. Form. Log. 52(2), 149–162 (2011)

    Article  MathSciNet  Google Scholar 

  24. Hunter, J.: Higher-Order Reverse Topology. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)–The University of Wisconsin - Madison (2008)

    Google Scholar 

  25. Kelley, J.L.: General Topology. Springer, Heidelberg (1975). Reprint of the 1955 edition, Graduate Texts in Mathematics, No. 27

    Google Scholar 

  26. Koellner, P.: Large Cardinals and Determinacy. The Stanford Encyclopedia of Philosophy (2014). https://plato.stanford.edu/archives/spr2014/entries/large-cardinals-determinacy/

  27. Kohlenbach, U.: Higher order reverse mathematics. Reverse Mathematics (2001). Lect. Notes Log., vol. 21, ASL, 2005, pp. 281–295

    Google Scholar 

  28. Kreuzer, A.P.: Primitive recursion and the chain antichain principle. Notre Dame J. Form. Log. 53(2), 245–265 (2012)

    Article  MathSciNet  Google Scholar 

  29. Li, G., Ru, J., Wu, G.: Rudin’s lemma and reverse mathematics. Ann. Jpn. Assoc. Philos. Sci. 25, 57–66 (2017)

    MathSciNet  Google Scholar 

  30. Longley, J., Normann, D.: Higher-Order Computability. Theory and Applications of Computability. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47992-6

    Book  MATH  Google Scholar 

  31. Medvedev, F.A.: Scenes from the History of Real Functions. Science Networks. Historical Studies, vol. 7. Birkhœuser Verlag, Basel (1991)

    Book  Google Scholar 

  32. Montalbán, A., Shore, R.A.: The limits of determinacy in second order arithmetic. Proc. Lond. Math. Soc. (3) 104(2), 223–252 (2012)

    Article  MathSciNet  Google Scholar 

  33. Moore, E.H.: Definition of limit in general integral analysis. Proc. Natl. Acad. Sci. U.S.A 1(12), 628–632 (1915)

    Article  Google Scholar 

  34. Moore, E., Smith, H.: A general theory of limits. Am. J. Math. 44, 102–121 (1922)

    Article  MathSciNet  Google Scholar 

  35. Moore, E.: General Analysis. Part I. The Algebra of Matrices, vol. 1. Memoirs of the American Philosophical Society, Philadelphia (1935)

    Google Scholar 

  36. Muldowney, P.: A General Theory of Integration in Function Spaces, Including Wiener and Feynman Integration, vol. 153. Longman Scientific & Technical, Harlow, Wiley (1987)

    Google Scholar 

  37. Mummert, C., Simpson, S.G.: Reverse mathematics and \({\varPi ^1_2}\) comprehension. Bull. Symb. Log. 11(4), 526–533 (2005)

    Article  Google Scholar 

  38. Mummert, C.: On the Reverse Mathematics of General Topology. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)–The Pennsylvania State University (2005)

    Google Scholar 

  39. Mummert, C.: Reverse mathematics of MF spaces. J. Math. Log. 6(2), 203–232 (2006)

    Article  MathSciNet  Google Scholar 

  40. Mummert, C., Stephan, F.: Topological aspects of poset spaces. Michigan Math. J. 59(1), 3–24 (2010)

    Article  MathSciNet  Google Scholar 

  41. Normann, D., Sanders, S.: On the mathematical and foundational significance of the uncountable. J. Math. Log. (2018). https://doi.org/10.1142/S0219061319500016

    Article  MATH  Google Scholar 

  42. Normann, D., Sanders, S.: Pincherle’s theorem in Reverse Mathematics and computability theory (2018, submitted). arXiv: https://arxiv.org/abs/1808.09783

  43. Normann, D., Sanders, S.: Representations in measure theory (2019). arXiv: https://arxiv.org/abs/1902.02756

  44. Pu, P.M., Liu, Y.M.: Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence. J. Math. Anal. Appl. 76(2), 571–599 (1980)

    Article  MathSciNet  Google Scholar 

  45. Sacks, G.E.: Higher Recursion Theory. Perspectives in Mathematical Logic. Springer, Heidelberg (1990)

    Book  Google Scholar 

  46. Sakamoto, N., Yamazaki, T.: Uniform versions of some axioms of second order arithmetic. MLQ Math. Log. Q. 50(6), 587–593 (2004)

    Article  MathSciNet  Google Scholar 

  47. Sanders, S.: Reverse Mathematics of topology: dimension, paracompactness, and splittings, p. 17 (2018). arXiv: https://arxiv.org/abs/1808.08785

  48. Sanders, S.: Nets and Reverse Mathematics: Initial Results. Proceedings of CiE19. LNCS, p. 12. Springer, Heidelberg (2019, to appear)

    Google Scholar 

  49. Sanders, S.: Splittings and disjunctions in Reverse Mathematics. Notre Dame J. Formal Log. 18 (2019, to appear). arXiv: https://arxiv.org/abs/1805.11342

  50. Simpson, S.G. (ed.): Reverse Mathematics (2001). Lecture Notes in Logic, vol. 21, ASL, La Jolla, CA (2005)

    Google Scholar 

  51. Simpson, S.G. (ed.): Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Logic, CUP (2009)

    Google Scholar 

  52. Simpson, S.G. (ed.): The Gödel hierarchy and reverse mathematics., Kurt Gödel. Essays for his centennial, pp. 109–127 (2010)

    Google Scholar 

  53. Stillwell, J.: Reverse Mathematics, Proofs from the Inside Out. Princeton University Press, Princeton (2018)

    Book  Google Scholar 

  54. Swartz, C.: Introduction to Gauge Integrals. World Scientific (2001)

    Google Scholar 

  55. Turing, A.: On computable numbers, with an application to the Entscheidungs-problem. Proc. Lond. Mat. Soc. 42, 230–265 (1936)

    MATH  Google Scholar 

  56. Vietoris, L.: Stetige mengen. Monatsh. Math. Phys. 31(1), 173–204 (1921). (German)

    Article  MathSciNet  Google Scholar 

  57. Wang, H.: Eighty years of foundational studies. Dialectica 12, 466–497 (1958)

    Article  MathSciNet  Google Scholar 

  58. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Sanders .

Editor information

Editors and Affiliations

A Technical Appendix

A Technical Appendix

We provide the full definition of the system \({{\mathsf{RCA}}_{0}^{\omega }}\) in Sect. A.1, while we list some proofs in Sect. A.2.

1.1 A.1 The Base Theory of Higher-Order Reverse Mathematics

We list all the axioms of the base theory \({{\mathsf{RCA}}_{0}^{\omega }}\), first introduced in [27, §2].

Definition A.1

The base theory \({{\mathsf{RCA}}_{0}^{\omega }}\) consists of the following axioms.

  1. (a)

    Basic axioms expressing that \(0, 1, <_{0}, +_{0}, \times _{0}\) form an ordered semi-ring with equality \(=_{0}\).

  2. (b)

    Basic axioms defining the well-known \(\varPi \) and \(\varSigma \) combinators (aka K and S in [2]), which allow for the definition of \(\lambda \)-abstraction.

  3. (c)

    The defining axiom of the recursor constant \(\mathbf {R}_{0}\): For \(m^{0}\) and \(f^{1}\):

    $$\begin{aligned} \mathbf {R}_{0}(f, m, 0):= m \text { and } \mathbf {R}_{0}(f, m, n+1):= f(n, \mathbf {R}_{0}(f, m, n)). \end{aligned}$$
    (A.1)
  4. (d)

    The axiom of extensionality: for all \(\rho , \tau \in \mathbf {T}\), we have:

    $$\begin{aligned} (\forall x^{\rho },y^{\rho }, \varphi ^{\rho \rightarrow \tau }) \big [x=_{\rho } y \rightarrow \varphi (x)=_{\tau }\varphi (y) \big ]. \qquad \qquad \quad (\textsf {\text {E}}_{\rho , \tau }) \end{aligned}$$
  5. (e)

    The induction axiom for quantifier-freeFootnote 4 formulas of \({\textsf {\text {L}}}_{\omega }\).

  6. (f)

    \({\mathsf{QF}\text {-}\mathsf{AC}}^{1,0}\): The quantifier-free Axiom of Choice as in Definition A.2.

Definition A.2

The axiom \({\mathsf{QF}\text {-}\mathsf{AC}}\) consists of the following for all \(\sigma , \tau \in \mathbf T \):

$$\begin{aligned} (\forall x^{\sigma })(\exists y^{\tau })A(x, y)\rightarrow (\exists Y^{\sigma \rightarrow \tau })(\forall x^{\sigma })A(x, Y(x)),\qquad \qquad \; ({\mathsf{QF}\text {-}\mathsf{AC}}^{\sigma ,\tau }) \end{aligned}$$

for any quantifier-free formula A in the language of \({\textsf {\text {L}}}_{\omega }\).

For completeness, we list the following notational convention on finite sequences.

Notation A.3

(Finite sequences). We assume a dedicated type for ‘finite sequences of objects of type \(\rho \)’, namely \(\rho ^{*}\). Since the usual coding of pairs of numbers goes through in \({{\mathsf{RCA}}_{0}^{\omega }}\), we shall not always distinguish between 0 and \(0^{*}\). Similarly, we do not always distinguish between ‘\(s^{\rho }\)’ and ‘\(\langle s^{\rho }\rangle \)’, where the former is ‘the object s of type \(\rho \)’, and the latter is ‘the sequence of type \(\rho ^{*}\) with only element \(s^{\rho }\)’. The empty sequence for the type \(\rho ^{*}\) is denoted by ‘\(\langle \rangle _{\rho }\)’, usually with the typing omitted.

Furthermore, we denote by ‘\(|s|=n\)’ the length of the finite sequence \(s^{\rho ^{*}}=\langle s_{0}^{\rho },s_{1}^{\rho },\dots ,s_{n-1}^{\rho }\rangle \), where \(|\langle \rangle |=0\), i.e. the empty sequence has length zero. For sequences \(s^{\rho ^{*}}, t^{\rho ^{*}}\), we denote by ‘\(s*t\)’ the concatenation of s and t, i.e. \((s*t)(i)=s(i)\) for \(i<|s|\) and \((s*t)(j)=t(|s|-j)\) for \(|s|\le j< |s|+|t|\). For a sequence \(s^{\rho ^{*}}\), we define \(\overline{s}N:=\langle s(0), s(1), \dots , s(N-1)\rangle \) for \(N^{0}<|s|\). For a sequence \(\alpha ^{0\rightarrow \rho }\), we also write \(\overline{\alpha }N=\langle \alpha (0), \alpha (1),\dots , \alpha (N-1)\rangle \) for any \(N^{0}\). By way of shorthand, \((\forall q^{\rho }\in Q^{\rho ^{*}})A(q)\) abbreviates \((\forall i^{0}<|Q|)A(Q(i))\), which is (equivalent to) quantifier-free if A is.

1.2 A.2 Some Proofs

We provide the proofs of some of the above theorems. First of all, the proof of Corollary 3.7 is as follows.

Proof

We only need to prove the reverse implication. To this end, let \(x_{d}:D\rightarrow I\) be an increasing net converging to some \(x\in I\). This convergence trivially implies:

$$\begin{aligned} \textstyle (\forall k\in {\mathbb {N}})(\exists d\in D)(|x-x_{d}|<\frac{1}{2^{k}}), \end{aligned}$$
(A.2)

and applying \({\mathsf{QF}\text {-}\mathsf{AC}}^{0, 1}\) to (A.2) yields \(\varPhi :{\mathbb {N}}\rightarrow D\) such that the sequence \(\lambda k^{0}.x_{\varPhi (k)}\) also converges to x as \(k\rightarrow \infty \). Since \({\mathsf{ADS}}\) is equivalent to the statement that a sequence in \({\mathbb {R}}\) has a monotone sub-sequence [28, §3], \({\mathsf{SUB}}_{0}\) follows.    \(\square \)

Secondly, the proof of Theorem 4.2 is as follows.

Proof

For the ‘vice versa’ direction, one uses the usual ‘interval halving technique’ where \(\exists ^{4}\) is used to decide whether there is \(e\in E\) such that \(x_{e}\) is in the relevant interval. For the other direction, fix \(F^{3}\), let E be \({\mathbb {N}}^{{\mathbb {N}}}\rightarrow {\mathbb {N}}\) itself, and define ‘\(X\preceq Y \)’ by \(F(X)\ge _{0} F(Y)\) for any \(X^{2}, Y^{2}\). It is easy to show that \((E, \preceq )\) is a directed set. Define the net \(x_{e}:E \rightarrow I\) by 0 if \(F(e)>0\), and 1 if \(F(e)=0\), which is increasing by definition. Hence, \(x_{e}\) converges, say to \(y_{0}\in I\), and if \(y_{0}>2/3\), then there must be \(Y^{2}\) such that \(F(Y)=0\), while if \(y_{0}<1/3\), then \((\forall Y^{2})(F(Y)>0)\). Clearly, this yields a term of Gödel’s T computing \(\exists ^{3}\).   \(\square \)

Thirdly, we provide the proof of Theorem 4.3.

Proof

For the ‘vice versa’ direction, one uses the usual ‘interval halving technique’ where \({\mathsf{S}}^{2}\) is used to decide whether there is \(d\in D\) such that \(x_{d}\) is in the relevant interval. For the other direction, fix \(f^{1}\), let D be Baire space, and define ‘\(h\preceq g\)’ by the following arithmetical formula

$$ (\forall n\in {\mathbb {N}})(\exists m\in {\mathbb {N}})\big [ f(\overline{g}n)>0 \rightarrow f(\overline{h}m)\ge f(\overline{g}n) \big ], $$

for any \(h, g\in D\). It is easy to show that \((D, \preceq )\) is a directed set. Define the net \(x_{g}:D \rightarrow I\) by 0 if \((\exists n^{0})(f(\overline{g}n)>0)\), and 1 if otherwise, which is arithmetical and increasing. Hence, \(x_{d}\) converges, say to \(y_{0}\in I\), and if \(y_{0}>2/3\), then there is \(g^{1}\) such that \((\forall n^{0})(f(\overline{g}n)=0)\), while if \(y_{0}<1/3\), then \((\forall g^{1})(\exists n^{0})(f(\overline{g}n)>0)\). Clearly, this provides a term of Gödel’s T computing \({\mathsf{S}}^{2}\).    \(\square \)

Fourth, we provide the proof of Corollary 4.4

Proof

Let \((\forall f^{1})\varphi (f, F^{2}, e^{0})\) be the formula expressing that the e-th algorithm with input \(F^{2}\) terminates, i.e. \(\varphi (f, F, e)\) is arithmetical with type two parameters. Let D be Baire space and define ‘\(f\preceq _{D} g\)’ by \(\varphi (f, F,e )\rightarrow \varphi (g, F, e)\), which readily yields a directed set. The net \(x_{d}:D\rightarrow {\mathbb {R}}\) is defined as follows: \(x_{f}\) is 0 if \(\varphi (f, F, e)\), and 1 otherwise. This net is increasing and \({\mathsf{MCT}}_{{\mathsf{net}}}^{\mathbb {S}}\) yields a limit \(y_{0}\in I\); if \(y_{0}>1/3\), then \(\{e\}(F)\) does not terminate, and if \(y<2/3\), then \(\{e\}(F)\) terminates.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanders, S. (2019). Reverse Mathematics and Computability Theory of Domain Theory. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science(), vol 11541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59533-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59533-6_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59532-9

  • Online ISBN: 978-3-662-59533-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics