Skip to main content

eVM: An Event Virtual Machine Framework

  • Chapter
  • First Online:
  • 285 Accesses

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 11310))

Abstract

Information and communication technology (ICT) is impacting our daily lives more than ever before. Many existing applications guide users in their daily activities (e.g., navigation through traffic, health monitoring, managing home comfort, socializing with others). Although these applications are different in terms of purpose and application domain, they all detect events and propose actions and decision making aid to users. However, there is no usage of a common backbone for event detection that can be instantiated, re-used, and reconfigured in different use cases. In this paper, we propose eVM, a generic event Virtual Machine able to detect events in different contexts while allowing domain experts to model and define the targeted events prior to detection. eVM simultaneously considers the various features of the defined events (e.g., temporal, geographical), and uses the latter to detect different feature-centric events (e.g., time-centric, location-centric). eVM is based on different components (an event query language, a query compiler, an event detection core, etc.), but mainly the event detection modules are detailed here. We show that eVM is re-usable in different contexts and that the performance of our prototype is quasi-linear in most cases. Our experimental results showed that the detection accuracy is improved when, besides spatio-temporal information, other features are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.apple.com/ios/photos.

  2. 2.

    https://developer.xamarin.com.

  3. 3.

    https://www.acleddata.com.

References

  1. Agarwal, Y., Balaji, B., Gupta, R., Lyles, J., Wei, M., Weng, T.: Occupancy-driven energy management for smart building automation. In: Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, pp. 1–6. ACM (2010)

    Google Scholar 

  2. Aggarwal, C.C.: Managing and Mining Sensor Data. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6309-2

    Book  Google Scholar 

  3. Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 37–45. ACM (1998)

    Google Scholar 

  4. Bahrepour, M., Meratnia, N., Havinga, P.J.: Sensor fusion-based event detection in wireless sensor networks. In: 6th Annual International Mobile and Ubiquitous Systems: Networking & Services, MobiQuitous 2009, pp. 1–8. IEEE (2009)

    Google Scholar 

  5. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-28349-8_2

    Chapter  Google Scholar 

  6. Buckman, A., Mayfield, M., BM Beck, S.: What is a smart building? Smart Sustain. Built Environ. 3(2), 92–109 (2014)

    Article  Google Scholar 

  7. Burmeister, P.: Formal concept analysis with ConImp: introduction to the basic features. Technische Universität Darmstadt, Fachbereich Mathematik (2003)

    Google Scholar 

  8. Cao, L., et al.: Image annotation within the context of personal photo collections using hierarchical event and scene models. IEEE Trans. Multimedia 11(2), 208–219 (2009)

    Article  MathSciNet  Google Scholar 

  9. Chen, L., Roy, A.: Event detection from flickr data through wavelet-based spatial analysis. In: Conference on Information and Knowledge Management, pp. 523–532 (2009)

    Google Scholar 

  10. Choi, V.: Faster algorithms for constructing a concept (galois) lattice. In: Clustering Challenges in Biological Networks, p. 169 (2006)

    Chapter  Google Scholar 

  11. Chong, C.Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. Proc. IEEE 91(8), 1247–1256 (2003)

    Article  Google Scholar 

  12. Compton, M., et al.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant.: Sci. Serv. Agents World Wide Web 17, 25–32 (2012)

    Article  Google Scholar 

  13. Cooper, M., et al.: Temporal event clustering for digital photo collections. ACM Trans. Multimedia Comput. Commun. Appl. 1(3), 269–288 (2005)

    Article  MathSciNet  Google Scholar 

  14. Cui, J., et al.: EasyAlbum: an interactive photo annotation system based on face clustering and re-ranking. In: Conference on Human Factors in Computing Systems, pp. 367–376. ACM (2007)

    Google Scholar 

  15. Doolin, D.M., Sitar, N.: Wireless sensors for wildfire monitoring. In: Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol. 5765, pp. 477–485. International Society for Optics and Photonics (2005)

    Google Scholar 

  16. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  17. Hanlon, M., Anderson, R.: Real-time gait event detection using wearable sensors. Gait & Posture 30(4), 523–527 (2009)

    Article  Google Scholar 

  18. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press (1975)

    Google Scholar 

  19. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  20. Jasiewicz, J.M., et al.: Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait & Posture 24(4), 502–509 (2006)

    Article  Google Scholar 

  21. Koperski, K., Adhikary, J., Han, J.: Spatial data mining: progress and challenges survey paper. In: ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, pp. 1–10 (1996)

    Google Scholar 

  22. Labeodan, T., De Bakker, C., Rosemann, A., Zeiler, W.: On the application of wireless sensors and actuators network in existing buildings for occupancy detection and occupancy-driven lighting control. Energy Buildings 127, 75–83 (2016)

    Article  Google Scholar 

  23. Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

    Article  Google Scholar 

  24. Leonardi, C., Cappellotto, A., Caraviello, M., Lepri, B., Antonelli, F.: SecondNose: an air quality mobile crowdsensing system. In: Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational, pp. 1051–1054. ACM (2014)

    Google Scholar 

  25. Li, S., Son, S.H., Stankovic, J.A.: Event detection services using data service middleware in distributed sensor networks. In: Zhao, F., Guibas, L. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 502–517. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36978-3_34

    Chapter  MATH  Google Scholar 

  26. Mei, T., et al.: Probabilistic multimodality fusion for event based home photo clustering. In: International Conference on Multimedia and Expo, pp. 1757–1760 (2006)

    Google Scholar 

  27. Oeldorf-Hirsch, A., Sundar, S.S.: Social and technological motivations for online photo sharing. J. Broadcast. Electron. Media 60(4), 624–642 (2016)

    Article  Google Scholar 

  28. Papadopoulos, S., et al.: Cluster-based landmark and event detection for tagged photo collections. IEEE MultiMedia 18(1), 52–63 (2011)

    Article  Google Scholar 

  29. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Sig. Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  30. Priss, U.: Formal concept analysis in information science. Arist 40(1), 521–543 (2006)

    Google Scholar 

  31. Quack, T., Leibe, B., Van Gool, L.: World-scale mining of objects and events from community photo collections. In: International Conference on Content-Based Image and Video Retrieval, pp. 47–56 (2008)

    Google Scholar 

  32. Raad, E.J., Chbeir, R.: Foto2Events: from photos to event discovery and linking in online social networks. In: International Conference on Big Data and Cloud Computing, pp. 508–515. IEEE (2014)

    Google Scholar 

  33. Rehman, S.U., et al.: DBSCAN: past, present and future. In: International Conference on Applications of Digital Information and Web Technologies, pp. 232–238 (2014)

    Google Scholar 

  34. Reuter, T., et al.: Reseed: social event detection dataset. In: Conference on Multimedia Systems, pp. 35–40. ACM (2014)

    Google Scholar 

  35. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of International Conference on WWW, pp. 851–860. ACM (2010)

    Google Scholar 

  36. Sayyadi, H., et al.: Event detection and tracking in social streams. In: ICWSM (2009)

    Google Scholar 

  37. Sheba, S., Ramadoss, B., Balasundaram, S.R.: Event detection refinement using external tags for flickr collections. In: Mohapatra, D.P., Patnaik, S. (eds.) Intelligent Computing, Networking, and Informatics. AISC, vol. 243, pp. 369–375. Springer, New Delhi (2014). https://doi.org/10.1007/978-81-322-1665-0_35

    Chapter  Google Scholar 

  38. Tan, P.N., et al.: Introduction to Data Mining. Pearson Education India (2006)

    Google Scholar 

  39. van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: a new incremental algorithm for constructing concept lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0_31

    Chapter  MATH  Google Scholar 

  40. Wahyudi, W.A., Syazilawati, M.: Intelligent voice-based door access control system using adaptive-network-based fuzzy inference systems (ANFIS) for building security. J. Comput. Sci. 3(5), 274–280 (2007)

    Article  Google Scholar 

  41. Welch, J., Guilak, F., Baker, S.D.: A wireless ECG smart sensor for broad application in life threatening event detection. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS 2004, vol. 2, pp. 3447–3449. IEEE (2004)

    Google Scholar 

  42. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Springer, Dordrecht (1982). https://doi.org/10.1007/978-94-009-7798-3_15

    Chapter  Google Scholar 

  43. Wong, J.K., Li, H., Wang, S.: Intelligent building research: a review. Autom. Constr. 14(1), 143–159 (2005)

    Article  Google Scholar 

  44. Wu, Y.H., Miller, H.J., Hung, M.C.: A GIS-based decision support system for analysis of route choice in congested urban road networks. J. Geog. Syst. 3(1), 3–24 (2001)

    Article  Google Scholar 

  45. Yu, L., Wang, N., Meng, X.: Real-time forest fire detection with wireless sensor networks. In: Proceedings of 2005 International Conference on Wireless Communications, Networking and Mobile Computing, vol. 2, pp. 1214–1217. IEEE (2005)

    Google Scholar 

  46. Zampolli, S., Elmi, I., Ahmed, F., Passini, M., Cardinali, G., Nicoletti, S., Dori, L.: An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sens. Actuators B: Chem. 101(1–2), 39–46 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gilbert Tekli and Dr. Yudith Cardinale for their valuable feedback and input. We would also like to thank Anthony Nassar for his remarkable contribution in developing the mobile application used for the experimentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elio Mansour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mansour, E., Chbeir, R., Arnould, P. (2018). eVM: An Event Virtual Machine Framework. In: Hameurlain, A., Wagner, R., Benslimane, D., Damiani, E., Grosky, W. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIX. Lecture Notes in Computer Science(), vol 11310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58415-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58415-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58414-9

  • Online ISBN: 978-3-662-58415-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics