Skip to main content

Reaktoren für spezielle technisch-chemische Prozesse: Elektrochemische Reaktoren

  • Living reference work entry
  • First Online:

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

Zusammenfassung

Elektrochemische Reaktoren sind Reaktionsapparate, in denen eine Wandlung zwischen chemischer und elektrischer Energie stattfindet. Sie werden häufig und in vielfältiger Gestalt in der Chemischen Industrie, zur Metallgewinnung und in der Energietechnik eingesetzt. Im vorliegenden Beitrag werden die für elektrochemische Reaktoren spezifischen Aspekte vorgestellt und die Konsequenzen für Auslegung und Betrieb diskutiert. Der aktuelle Stand der Entwicklungen wird anhand der technisch bedeutsamen Beispiele Chlor-Alkali-Elektrolyse, PEM-Brennstoffzelle und Redox-Flow-Batterie verdeutlicht.

This is a preview of subscription content, log in via an institution.

Literatur

  • Arenas, L.F., de León, C.P., Walsh, F.C.: Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. J. Energy Storage 11, 119–153 (2017)

    Article  Google Scholar 

  • Carta, R., Palmas, S., Polcaro, A.M., Tola, G.: Behaviour of a carbon felt flow by electrodes part I: mass transfer characteristics. J. Appl. Electrochem. 21, 793–798 (1991)

    Article  CAS  Google Scholar 

  • Covestro, A.G.: Oxygen depolarized cathode (ODC) technology. https://www.covestro.com/-/media/covestro/country-sites/global/documents/sustainability/3_6_covestro_produktblatt_oxygendepolarized_cathode_en_2017_te_v02.pdf. Zugegriffen am 02.06.2018

  • Darling, R.M., Shiau, H.S., Weber, A.Z., Perry, M.L.: The relationship between shunt currents and edge corrosion in flow batteries. J. Electrochem. Soc. 164, E3081–E3091 (2017)

    Article  CAS  Google Scholar 

  • De Nora S.p.A.: Electrolysis hydrochloric acid. http://www.denora.com/markets/chlorine-caustic-industry/HCl.html. Zugegriffen am 04.06.2018

  • Djilali, N., Sui, P.C.: Transport phenomena in fuel cells: From microscale to macroscale. Int. J. Comput. Fluid Dyn. 22, 115–133 (2008)

    Article  Google Scholar 

  • Dubau, L., Castanheira, L., Maillard, F., Chatenet, M., Lottin, O., Maranzana, G., Dillet, J., Lamibrac, A., Perrin, J.-C., Moukheiber, E., ElKaddouri, A., de Moor, G., Bas, C., Flandin, F., Caqué, N.: A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies. WIREs Energy Environ. 3, 540–560 (2014)

    Article  CAS  Google Scholar 

  • Ebert, H.: Elektrochemie. Vogel Verlag, Würzburg (1972). ISBN 3-8023-0031-9, Seite 116–118/

    Google Scholar 

  • Endres, F., Abbott, A., MacFarlane, D.R.: Electrodeposition from Ionic Liquids. Wiley-VCH Verlag, Weinheim (2008)

    Book  Google Scholar 

  • Ferng, Y.M., Su, A.: A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance. Int. J. Hydrogen Energy 32, 4466–4476 (2007)

    Article  CAS  Google Scholar 

  • Fuller, T.F., Harb, J.N.: Electrochemical Engineering. Wiley, Hoboken (2018)

    Google Scholar 

  • Grot, W.G.: CF2=CFCF2CF2SO2F and related fluorocarbon vinyl compounds. Kanadisches Patent CA883324 (1971)

    Google Scholar 

  • Hamann, C.H., Vielstich, W.: Elektrochemie, 4. Aufl. Wiley-VCH Verlag, Weinheim (2005)

    Google Scholar 

  • Harbou, E. von, Wachsen, O., Klemm, E., Dreiser, C.: Technische Chemie 2016. Nachr. Chem. 65, 367–374 (2017)

    Article  Google Scholar 

  • Hoormann, D., Jörissen, J., Pütter, H.: Elektrochemische Verfahren – Neue Entwicklungen und Tendenzen. Chem. Ing. Tech. 67, 1363–1376 (2005)

    Article  Google Scholar 

  • Houser, J., Clement, J., Pezeshki, A., Mench, M.M.: Influence of architecture and material properties on vanadium redox flow battery performance. J. Power Sources 302, 369–377 (2016)

    Article  CAS  Google Scholar 

  • Hreiz, R., Abdelouahed, L., Fuenfschilling, D., Lapicque, F.: Electrogenerated bubbles induced convection in narrow vertical cells: PIV measurements and Euler–Lagrange CFD simulation. Chem. Eng. Sci. 134, 138–152 (2015a)

    Article  CAS  Google Scholar 

  • Hreiz, R., Abdelouahed, L., Fuenfschilling, D., Lapicque, F.: Electrogenerated bubbles induced convection in narrow vertical cells: A review. Chem. Eng. Res. Des. 100, 268–281 (2015b)

    Article  CAS  Google Scholar 

  • Huang, K., Singhal, S.C.: Cathode-supported tubular solid oxide fuel cell technology: A critical review. J. Power Sources 237, 84–97 (2013)

    Article  CAS  Google Scholar 

  • IHS Chemical World Analysis – Chlor-Alkali. Technical report (2014)

    Google Scholar 

  • Inzelt, G.: Milestones of the development of kinetics of electrode reactions. J. Solid State Electrochem. 15, 1373–1389 (2011)

    Article  CAS  Google Scholar 

  • Ismail, M.I.: Electrochemical Reactors, their Science and Technology. Elsevier, Amsterdam (1989)

    Google Scholar 

  • Janoschka, T., Martin, N., Martin, U., Friebe, C., Morgenstern, S., Hiller, H., Hager, M.D., Schubert, U.S.: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78–81 (2015)

    Article  CAS  Google Scholar 

  • Jörissen, J., Turek, T., Weber, R.: Chlorherstellung mit Sauerstoffverzehrkathoden. Chem. unserer Zeit 45, 172–183 (2011)

    Article  Google Scholar 

  • Jüttner, K.: Technical scale of electrochemistry. In: Bard, A.J., Stratmann, M. (Hrsg.) Encyclopedia of Electrochemistry, Vol. 5 Electrochemical Engineering. Wiley-VCH Verlag, Weinheim (2007)

    Google Scholar 

  • Kangro, W.: Verfahren zur Speicherung von elektrischer Energie. Deutsches Patent DE914264 (1949)

    Google Scholar 

  • Kee, R.J., Zhu, H.: Modeling porous media transport, heterogeneous thermal chemistry, and electrochemical charge transfer. In: Deutschmann, O. (Hrsg.) Modeling and Simulation of Heterogeneous Catalytic Reactions. Wiley-VCH Verlag, Weinheim (2011)

    Google Scholar 

  • Kok, M.D., Jervis, R., Shearing, P.R., Gostick, J.T.: Fluid transport properties from 3D tomographic images of electrospun carbon electrodes for flow batteries. ECS Trans. 77, 129–143 (2017)

    Article  CAS  Google Scholar 

  • Kongkanand, A., Subramanian, N.P., Yu, Y., Liu, Z., Igarashi, H., Muller, D.A.: Achieving high-power PEM fuel cell performance with an ultralow Pt-content core−shell catalyst. ACS Catal. 6, 1578–1583 (2016)

    Article  CAS  Google Scholar 

  • Li, X., Sabir, I.: Review of bipolar plates in PEM fuel cells: Flow-field designs. Int. J. Hydrogen Energ. 30, 359–371 (2005)

    Article  CAS  Google Scholar 

  • Lin, K., Gómez-Bombarelli, R., Beh, E.S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M.J., Gordon, R.G.: A redox-flow battery with an alloxazine-based organic electrolyte. Nat. Energy 1, 16102 (2016)

    Article  CAS  Google Scholar 

  • Marx, F.: Verfahren zum Aufspeichern elektrischer Energie. Deutsches Patent DE55193 (1889)

    Google Scholar 

  • Moussallem, I., Jörissen, J., Kunz, U., Pinnow, S., Turek, T.: Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J. Appl. Electrochem. 38, 1177–1194 (2008)

    Article  CAS  Google Scholar 

  • Newman, J., Thomas-Alyea, K.E.: Electrochemical Systems. Wiley, Hoboken (2004)

    Google Scholar 

  • Niu, X.-D., Munekata, T., Hyodo, S.-A., Suga, K.: An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model. J. Power Sources 172, 542–552 (2007)

    Article  CAS  Google Scholar 

  • Novev, J.K., Compton, R.G.: Natural convection effects in electrochemical systems. Curr. Opin. Electrochem. 7, 118–129 (2018)

    Article  CAS  Google Scholar 

  • Paidar, M., Fateev, V., Bouzek, K.: Membrane electrolysis – history, current status and perspective. Electrochim. Acta. 209, 737–756 (2016)

    Article  CAS  Google Scholar 

  • Picket, D.J.: Electrochemical Reactor Design. Elsevier, Amsterdam (1979)

    Google Scholar 

  • Pinnow, S.: Modellierung von Sauerstoffverzehr-Kathoden für die Chloralkali-Elektrolyse. Dissertation, TU Clausthal (2011)

    Google Scholar 

  • Ran, J., Wu, L., He, Y.B., Yang, Z.J., Wang, Y.M., Jiang, C.X., Ge, L., Bakangura, E., Xu, T.W.: Ion exchange membranes: New developments and applications. J. Membr. Sci. 522, 267–291 (2017)

    Article  CAS  Google Scholar 

  • Ressel, S., Laube, A., Fischer, S., Chica, A., Flower, T., Struckmann, T.: Performance of a vanadium redox flow battery with tubular cell design. J. Power Sources 355, 199–205 (2017)

    Article  CAS  Google Scholar 

  • Rideal, E.K., Evans, U.R.: The problem of the fuel cell. Trans. Faraday Soc. 17, 466–482 (1922)

    Article  Google Scholar 

  • Scheiba, F., Kunz, U., Butsch, H., Zils, S., Fuess, H., Roth, C.: Imaging the electrode-GDL interface by a modified Wood’s intrusion process. ECS Trans. 28(27), 85–92 (2010)

    Article  CAS  Google Scholar 

  • Schmal, D., van Erkel, J., van Duin, P.J.: Mass transfer at carbon fibre electrodes. J. Appl. Electrochem. 16, 422–430 (1986)

    Article  CAS  Google Scholar 

  • Schmid, A.: Die Diffusionsgaselektrode. Verlag Enke, Stuttgart (1923)

    Google Scholar 

  • Schmidt, V.M.: Elektrochemische Verfahrenstechnik. Wiley-VCH Verlag, Weinheim (2003)

    Book  Google Scholar 

  • Schmittinger, P., Florkiewicz, T., Curlin, L.C., Lüke, B., Scannell, R., Navin, T., Zelfel, E., Bartsch, R.: Chlorine. In: Ullmann’s Encyclopedia of Industrial Chemistry, Electronic Release. Wiley-VCH Verlag, Weinheim (2000)

    Google Scholar 

  • Scott, K.: Electrochemical Reaction Engineering. Academic Press, London (1991)

    Google Scholar 

  • Siegel, C.: Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells. Energy 33, 1331–1352 (2008)

    Article  CAS  Google Scholar 

  • Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S., Saleem, M.: Progress in flow battery research and development. J. Electrochem. Soc. 158, R55–R79 (2011)

    Article  CAS  Google Scholar 

  • Smolinka, T.: Water electrolysis. In: Encyclopedia of Electrochemical Power Sources, Electronic Release. Elsevier, Amsterdam (2009)

    Chapter  Google Scholar 

  • Soloveichik, G.L.: Flow batteries: Current status and trends. Chem. Rev. 115, 11533–11558 (2015)

    Article  CAS  Google Scholar 

  • Sumitomo Electric: Development and demonstration of redox flow battery system. http://global-sei.com/technology/tr/bn84/pdf/84-04.pdf (2017). Zugegriffen am 14.06.2018

  • Thaller, L.H.: Electrically rechargeable redox flow cell. US Patent US3996064 (1976)

    Google Scholar 

  • Thaller, L.H.: Electrochemical cell for rebalancing redox flow systems. US Patent US4159366 (1979)

    Google Scholar 

  • thyssenkrupp Uhde Chlorine Engineers: Chlor-alkali electrolysis. https://www.thyssenkrupp-uhde-chlorine-engineers.com/en/products/chlor-alkali-electrolysis/ (2018a). Zugegriffen am 16.05.2018

  • thyssenkrupp Uhde Chlorine Engineers: Advanced alkaline water electrolysis. https://www.thyssenkrupp-uhde-chlorine-engineers.com/en/products/water-electrolysis/allkaline-water-electrolysis/ (2018b). Zugegriffen am 16.05.2018

  • Tjaden, B., Brett, D.J., Shearing, P.R.: Tortuosity in electrochemical devices: A review of calculation approaches. Int. Mater. Rev. 63, 47–67 (2018)

    Article  CAS  Google Scholar 

  • Tomadakis, M.M., Robertson, T.J.: Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. J. Compos. Mater 39, 163–188 (2005)

    Google Scholar 

  • Trasatti, S.: Electrokinetics. In: Encyclopedia of Electrochemical Power Sources, Electronic Release. Elsevier, Amsterdam (2009)

    Chapter  Google Scholar 

  • Trogadas, P., Taiwo, O.O., Tjaden, B., Neville, T.P., Yun, S., Parrondo, J., Shearing, P.R.: X-ray micro-tomography as a diagnostic tool for the electrode degradation in vanadium redox flow batteries. Electrochem. Commun. 48, 155–159 (2014)

    Article  CAS  Google Scholar 

  • Vielstich, W., Lamm, A., Gasteiger, H.A. (Hrsg.): Handbook of Fuel Cells: Fundamentals, Technology, Applications. Wiley-VCH Verlag, Weinheim (2003)

    Google Scholar 

  • Vijayakumar, M., Li, L., Graff, G., Liu, J., Zhang, H., Yang, Z., Hu, J.Z.: Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries. J. Power Sources 196, 3669–3672 (2011)

    Article  CAS  Google Scholar 

  • Vogt, H., Kreysa, G., Vasudevan, S., Wüthrich, R., Abou Ziki, J.D., El-Haddad, R.: Electrochemical reactors. In: Ullmann’s Encyclopedia of Industrial Chemistry, Electronic Release. Wiley-VCH Verlag, Weinheim (2014)

    Google Scholar 

  • Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., Adroher, X.C.: A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011)

    Article  CAS  Google Scholar 

  • Weber, A.Z., Newman, J.: Modeling transport in polymer-electrolyte fuel cells. Chem. Rev. 104, 4679–4726 (2004)

    Article  CAS  Google Scholar 

  • Wendt, H., Kreysa, G.: Electrochemical Engineering. Springer, Berlin (1999)

    Book  Google Scholar 

  • Wu, H.-W.: A review of recent development: transport and performance modeling of PEM fuel cells. Appl. Energy 165, 81–106 (2016)

    Article  CAS  Google Scholar 

  • Xing, F., Zhang, H.M., Ma, X.K.: Shunt current loss of the vanadium redox flow battery. J. Power Sources 196, 10753–10757 (2011)

    Article  CAS  Google Scholar 

  • Xu, Q., Zhao, T.S.: Fundamental models for flow batteries. Prog. Energy Combust. Sci. 49, 40–58 (2015)

    Article  Google Scholar 

  • Zhou, X.L., Zhao, T.S., An, L., Zeng, Y.K., Wie, L.: Critical transport issues for improving the performance of aqueous redox flow batteries. J. Power Sources 330, 1–12 (2017)

    Article  Google Scholar 

Download references

Danksagung

Wir danken Dr. Ingo Manke vom HZB für die Überlassung einer tomographischen Aufnahme und unserem wissenschaftlichen Mitarbeiter M.Sc. Jörn Brauns für die Erstellung zahlreicher Abbildungen sehr herzlich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Turek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wehinger, G.D., Kunz, U., Turek, T. (2018). Reaktoren für spezielle technisch-chemische Prozesse: Elektrochemische Reaktoren. In: Reschetilowski, W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56444-8_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56444-8_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56444-8

  • Online ISBN: 978-3-662-56444-8

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics