Skip to main content

Reaktoren für Dreiphasen-Reaktionen: Monolithreaktoren

  • Living reference work entry
  • First Online:
  • 820 Accesses

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

Zusammenfassung

Dieses Kapitel befasst sich mit der Anwendung monolithischer Strukturen für Dreiphasen-Reaktionen. Der Fokus liegt dabei auf Hydrodynamik, Stoff- und Wärmetransport sowie auf der vergleichenden Einordnung von Monolithreaktoren und klassischen Rieselbettreaktoren im Hinblick auf ihre diesbezüglichen Eigenschaften. Mögliche Vorteile und Anwendungsgebiete von Monolithreaktoren werden ebenfalls diskutiert. Betrachtet werden hierbei Waben, Schäume sowie weitere konventionell und additiv gefertigte monolithische Strukturen.

This is a preview of subscription content, log in via an institution.

Literatur

  • Abiev, R.S.: Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli- and microchannels. Chem. Eng. J. 227, 66–79 (2013)

    Article  CAS  Google Scholar 

  • Abiev, R.S., Lavretsov, I.V.: Hydrodynamics of gas-liquid Taylor flow and liquid–solid mass transfer in mini channels: theory and experiment. Chem. Eng. J. 176–177, 57–64 (2011)

    Article  CAS  Google Scholar 

  • Al-Rawashdeh, M., Fluitsma, L.J.M., Nijhuis, T.A., Rebrov, E.V., Hessel, V., Schouten, J.C.: Design criteria for a barrier-based gas-liquid flow distributor for parallel microchannels. Chem. Eng. J. 181–182, 549–556 (2012)

    Article  CAS  Google Scholar 

  • Ambrosetti, M., Bracconi, M., Groppi, G., Tronconi, E.: Analytical geometrical model of open cell foams with detailed description of strut-node intersection. Chem. Ing. Tech. 89(7), 915–925 (2017)

    Article  CAS  Google Scholar 

  • Angeli, P., Gavriilidis, A.: Hydrodynamics of Taylor flow in small channels: a review. Proc. Inst. Mech. Eng. Part C. 222(5), 737–751 (2008)

    Article  CAS  Google Scholar 

  • Aussillous, P., Quere, D.: Quick deposition of a fluid on the wall of a tube. Phys. Fluids 12(10), 2367–2371 (2000)

    Article  CAS  Google Scholar 

  • Baten, J.M. van, Krishna, R.: CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries. Chem. Eng. Sci. 59(12), 2535–2545 (2004)

    Google Scholar 

  • Baten, J.M. van, Krishna, R.: CFD simulations of wall mass transfer for Taylor flow in circular capillaries. Chem. Eng. Sci. 60(4), 1117–1126 (2005)

    Google Scholar 

  • Bauer, T., Haase, S.: Comparison of structured trickle-bed and monolithic reactors in Pd-catalyzed hydrogenation of alpha-methylstyrene. Chem. Eng. J. 169(1–3), 263–269 (2011)

    Article  CAS  Google Scholar 

  • Bauer, T., Guettel, R., Roy, S., Schubert, M., Al-Dahhan, M., Lange, R.: Modelling and simulation of the monolithic reactor for gas-liquid-solid reactions. Chem. Eng. Res. Des. 83(A7), 811–819 (2005)

    Article  CAS  Google Scholar 

  • Bauer, T., Haase, S., Lange, R.: Konzeptstudie: Strukturierter Rieselbettreaktor. Chem. Ing. Tech. 81(7), 989–994 (2009)

    Article  CAS  Google Scholar 

  • Berčić, G., Pintar, A.: The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries. Chem. Eng. Sci. 52(21–22), 3709–3719 (1997)

    Google Scholar 

  • Bianchi, E., Heidig, T., Visconti, C.G., Groppi, G., Freund, H., Tronconi, E.: An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors. Chem. Eng. J. 198–199, 512–528 (2012)

    Article  CAS  Google Scholar 

  • Bianchi, E., Heidig, T., Visconti, C.G., Groppi, G., Freund, H., Tronconi, E.: Heat transfer properties of metal foam supports for structured catalysts: wall heat transfer coefficient. Catal. Today 216, 121–134 (2013)

    Article  CAS  Google Scholar 

  • Bretherton, F.P.: The motion of long bubbles in tubes. J. Fluid Mech. 10(2), 166–188 (1961)

    Article  Google Scholar 

  • Broekhuis, R.R., Machado, R.M., Nordquist, A.F.: The ejector-driven monolith loop reactor – experiments and modeling. Catal. Today 69(1–4), 87–93 (2001)

    Article  CAS  Google Scholar 

  • Brück, R., Müller-Haas, K., Breuer, J., Webb, C.: Advanced Performance of Metallic Converter Systems Demonstrated on a Production V8 Engine. SAE-Paper 2002-01-0347 (2002)

    Google Scholar 

  • Busse, C., Freund, H., Schwieger, W.: Intensification of heat transfer in catalytic reactors by additively manufactured periodic open cellular structures (POCS). Chem. Eng. Process 124, 199–214 (2018)

    Google Scholar 

  • Crynes, L.L., Cerro, R.L., Abraham, M.A.: Monolithic frooth reactor – development of a novel 3-phase catalytic system. AIChE J. 41(2), 337–345 (1995)

    Article  CAS  Google Scholar 

  • Cybulski, A., Moulijn, J.A.: Structured Catalysts and Reactors, 2. Aufl. Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  • Deugd, R.M. de, Chougule, R.B., Kreutzer, M.T., Meeuse, F.M., Grievink, J., Kapteijn, F., Moulijn, J.A.: Is a monolithic loop reactor a viable option for Fischer-Tropsch synthesis? Chem. Eng. Sci. 58(3–6), 583–591 (2003)

    Google Scholar 

  • Devatine, A., Chaumat, H., Guillaume, S., Tati Tchibouanga, B., Durán Martínez, F., Julcour, C., Billet, A.-M.: Hydrodynamic study of a monolith-type reactor for intensification of gas-liquid applications. Chem. Eng. Process 122, 277–287 (2017)

    Google Scholar 

  • Dietrich, B., Schabel, W., Kind, M., Martin, H.: Pressure drop measurements of ceramic sponges – determining the hydraulic diameter. Chem. Eng. Sci. 64(16), 3633–3640 (2009)

    Article  CAS  Google Scholar 

  • Dietrich, N., Loubiere, K., Jimenez, M., Hebrard, G., Gourdon, C.: A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel. Chem. Eng. Sci. 100, 172–182 (2013)

    Article  CAS  Google Scholar 

  • Du, P., Carneiro, J.T., Moulijn, J.A., Mul, G.: A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis. Appl. Catal. A. 334(1), 119–128 (2008)

    Article  CAS  Google Scholar 

  • Dudukovic, M.P., Kuzeljevic, Ž.V., Combest, D.P.: Three-phase trickle-bed reactors. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2014)

    Google Scholar 

  • Edouard, D., Lacroix, M., Pham, C., Mbodji, M., Pham-Huu, C.: Experimental measurements and multiphase flow models in solid SiC foam beds. AIChE J. 54(11), 2823–2832 (2008)

    Article  CAS  Google Scholar 

  • Edouard, D., Truong Huu, T., Pham Huu, C., Luck, F., Schweich, D.: The effective thermal properties of solid foam beds: experimental and estimated temperature profiles. Int. J. Heat Mass Transfer 53(19), 3807–3816 (2010)

    Article  CAS  Google Scholar 

  • Edvinsson Albers, R., Nyström, M., Siverström, M., Sellin, A., Dellve, A.C., Andersson, U., Herrmann, W., Berglin, T.: Development of a monolith-based process for H2O2 production: from idea to large-scale implementation. Catal. Today 69(1–4), 247–252 (2001)

    Article  CAS  Google Scholar 

  • Elias, Y., Rudolf von Rohr, P., Bonrath, W., Medlock, J., Buss, A.: A porous structured reactor for hydrogenation reactions. Chem. Eng. Process 95, 175–185 (2015)

    Google Scholar 

  • Enache, D.I., Hutchings, G.J., Taylor, S.H., Natividad, R., Raymahasay, S., Winterbottom, J.M., Stitt, E.H.: Experimental evaluation of a three-phase downflow capillary reactor. Ind. Eng. Chem. Res. 44(16), 6295–6303 (2005)

    Article  CAS  Google Scholar 

  • Fairbrother, F., Stubbs, A.E.: Studies in electro-endosmosis Part VI The „bubbletube“ method of measurement. J. Chem. Soc. 1, 527–529 (1935)

    Article  Google Scholar 

  • Fan, X., Ou, X., Xing, F., Turley, G.A., Denissenko, P., Williams, M.A., Batail, N., Pham, C., Lapkin, A.A.: Microtomography-based numerical simulations of heat transfer and fluid flow through β-SiC open-cell foams for catalysis. Catal. Today 278, 350–360 (2016)

    Article  CAS  Google Scholar 

  • Faridkhou, A., Tourvieille, J.-N., Larachi, F.: Reactions, hydrodynamics and mass transfer in micro-packed beds – overview and new mass transfer data. Chem. Eng. Process 110, 80–96 (2016)

    Google Scholar 

  • Fries, D.M., Trachsel, F., von Rohr, P.R.: Segmented gas-liquid flow characterization in rectangular microchannels. Int. J. Multiphase Flow 34(12), 1108–1118 (2008)

    Article  CAS  Google Scholar 

  • Gascon, J., van Ommen, J.R., Moulijn, J.A., Kapteijn, F.: Structuring catalyst and reactor – an inviting avenue to process intensification. Cat. Sci. Technol. 5, 807–817 (2015)

    Google Scholar 

  • Groppi, G., Tronconi, E., Cortelli, C., Leanza, R.: Conductive monolithic catalysts: development and industrial pilot tests for the oxidation of o-xylene to phthalic anhydride. Ind. Eng. Chem. Res. 51(22), 7590–7596 (2012)

    Article  CAS  Google Scholar 

  • Gruber, R., Melin, T.: Radial mass-transfer enhancement in bubble-train flow. Int. J. Heat Mass Transfer 46(15), 2799–2808 (2003)

    Article  CAS  Google Scholar 

  • Gulati, S.T.: Ceramic catalyst supports for gasoline fuel. In: Cybuslki, A., Moulijn, J.A. (Hrsg.) Structured Catalysts and Reactors, 2. Aufl. CRC Press, Boca Raton (2006)

    Google Scholar 

  • Güttel, R., Turek, T.: Assessment of micro-structured fixed-bed reactors for highly exothermic gas-phase reactions. Chem. Eng. Sci. 65(5), 1644–1654 (2010)

    Article  CAS  Google Scholar 

  • Güttel, R., Eisenbeis, C., Knochen, J., Turek, T.: Monolithic honeycombs in loop reactor configuration for intensification of multiphase processes. Chem. Eng. Technol. 38(10), 1726–1732 (2015)

    Article  CAS  Google Scholar 

  • Haase, S.: Minichannel flow reactors for gas-liquid-solid reactions. Dissertation, Technische Universität Dresden (2013)

    Google Scholar 

  • Haase, S.: Characterisation of gas-liquid two-phase flow in minichannels with co-flowing fluid injection inside the channel, part I: unified mapping of flow regimes. Int. J. Multiphase Flow 87, 197–211 (2016)

    Article  CAS  Google Scholar 

  • Haase, S.: Novel Gas-Liquid-Solid Reactors for Modular Process Plants. Technische Universität Dresden, Habilitation (2018)

    Google Scholar 

  • Haase, S., Bauer, T.: New method for simultaneous measurement of hydrodynamics and reaction rates in a mini-channel with Taylor flow. Chem. Eng. J. 176, 65–74 (2011)

    Article  CAS  Google Scholar 

  • Haase, S., Weiss, M., Langsch, R., Bauer, T., Lange, R.: Hydrodynamics and mass transfer in three-phase composite minichannel fixed-bed reactors. Chem. Eng. Sci. 94, 224–236 (2013)

    Article  CAS  Google Scholar 

  • Haase, S., Langsch, R., Bauer, T., Lange, R.: Impact of spherical catalyst particles on gas-liquid flow regimes in minichannels with square cross section. Chem. Ing. Tech. 86(4), 467–475 (2014)

    Article  CAS  Google Scholar 

  • Haase, S., Bauer, T., Lange, R.: Numbering-up of mini- and microchannel contactors and reactors. Chim. Oggi. 33(2), 26–30 (2015)

    Google Scholar 

  • Haase, S., Murzin, D.Y., Salmi, T.: Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow. Chem. Eng. Res. Des. 113, 304–329 (2016)

    Article  CAS  Google Scholar 

  • Han, Y., Shikazono, N.: Measurement of the liquid film thickness in micro tube slug flow. Int. J. Heat Fluid Flow 30(5), 842–853 (2009)

    Article  CAS  Google Scholar 

  • Hassanvand, A., Hashemabadi, S.H.: Direct numerical simulation of mass transfer from Taylor bubble flow through a circular capillary. Int. J. Heat Mass Transfer 55(21), 5959–5971 (2012)

    Article  Google Scholar 

  • Hatziantoniou, V., Andersson, B.: Solid-liquid mass-transfer in segmented gas-liquid flow through a capillary. Ind. Eng. Chem. Fundam. 21(4), 451–456 (1982)

    Article  CAS  Google Scholar 

  • Hatziantoniou, V., Andersson, B., Schoon, N.H.: Mass-transfer and selectivity in liquid-phase hydrogenation of nitrocompounds in a monolithic catalyst reactor with segmented gas-liquid flow. Ind. Eng. Chem. Process Des. Dev. 25(4), 964–970 (1986)

    Article  CAS  Google Scholar 

  • Haverkamp, V., Hessel, V., Löwe, H., Menges, G., Warnier, M.J.F., Rebrov, E.V., de Croon, M., Schouten, J.C., Liauw, M.A.: Hydrodynamics and mixer-induced bubble formation in micro bubble columns with single and multiple-channels. Chem. Eng. Technol. 29(9), 1015–1026 (2006)

    Article  CAS  Google Scholar 

  • Heck, R.M., Farrauto, R.J., Gulati, S.T.: Catalytic Air Pollution Control, 3. Aufl. Wiley, Hoboken (2009)

    Google Scholar 

  • Heibel, A.K., Vergeldt, F.J., van As, H.: Gas and liquid distribution in the monolith film flow reactor. AIChE J. 49(12), 3007–3017 (2003)

    Article  CAS  Google Scholar 

  • Hipolito, A.I., Rolland, M., Boyer, C., de Bellefon, C.: Single pellet string reactor for intensification of catalyst testing in gas/liquid/solid configuration. Oil Gas Sci. Technol. 65(5), 689–701 (2010)

    Article  CAS  Google Scholar 

  • Höller, V., Wegricht, D., Kiwi-Minsker, L., Renken, A.: Fibrous structured catalytic beds for three-phase reaction engineering: hydrodynamics study in staged bubble columns. Catal. Today 60(1), 51–56 (2000)

    Article  Google Scholar 

  • Horvath, C., Solomon, B.A., Engasser, J.M.: Measurement of radial transport in slug flow using enzyme tubes. Ind. Eng. Chem. Fundam. 12(4), 431–439 (1973)

    Article  CAS  Google Scholar 

  • Iliuta, I., Larachi, F.: Three-phase fixed-bed reactors. In: Önsan, Z.I., Avci, A.K. (Hrsg.) Multiphase Catalytic Reactors: Theory, Design, Manufacturing, and Applications, S. 97–131. Wiley, Hoboken (2016)

    Google Scholar 

  • Irandoust, S., Andersson, B.: Mass-transfer and liquid phase reactions in a segmented 2-phase flow monolithic catalyst reactor. Chem. Eng. Sci. 43(8), 1983–1988 (1988)

    Article  CAS  Google Scholar 

  • Irandoust, S., Gahne, O.: Competitive hydrodesulfurization and hydrogenation in a monolithic reactor. AIChE J. 36(5), 746–752 (1990)

    Article  CAS  Google Scholar 

  • Irandoust, S., Ertle, S., Andersson, B.: Gas-liquid mass-transfer in Taylor flow through a capillary. Can. J. Chem. Eng. 70(1), 115–119 (1992)

    Article  CAS  Google Scholar 

  • Kallinikos, L.E., Papayannakos, N.G.: Fluid dynamic characteristics of a structured bed spiral mini-reactor. Chem. Eng. Sci. 62, 5979–5988 (2007a)

    Article  CAS  Google Scholar 

  • Kallinikos, L.E., Papayannakos, N.G.: Operation of a miniscale string bed reactor in spiral form at hydrotreatment conditions. Ind. Eng. Chem. Res. 46(17), 5531–5535 (2007b)

    Article  CAS  Google Scholar 

  • Kallinikos, L.E., Papayannakos, N.G.: Intensification of hydrodesulphurization process with a structured bed spiral mini-reactor. Chem. Eng. Process 49(10), 1025–1030 (2010)

    Google Scholar 

  • Kapteijn, F., Nijhuis, T.A., Heiszwolf, J.J., Moulijn, J.A.: New non-traditional multiphase catalytic reactors based on monolithic structures. Catal. Today 66(2–4), 133–144 (2001)

    Article  CAS  Google Scholar 

  • Kaskes, B., Vervloet, D., Kapteijn, F., van Ommen, J.R.: Numerical optimization of a structured tubular reactor for Fischer-Tropsch synthesis. Chem. Eng. J. 283, 1465–1483 (2016)

    Google Scholar 

  • Keskin, O., Woerner, M., Soyhan, H.S., Bauer, T., Deutschmann, O., Lange, R.: Viscous co-current downward Taylor flow in a square mini-channel. AIChE J. 56(7), 1693–1702 (2010)

    Article  CAS  Google Scholar 

  • Klaseboer, E., Gupta, R., Manica, R.: An extended Bretherton model for long Taylor bubbles at moderate capillary numbers. Phys. Fluids 26(3), 032107 (2014)

    Google Scholar 

  • Klinghoffer, A.A., Cerro, R.L., Abraham, M.A.: Influence of flow properties on the performance of the monolith froth reactor for catalytic wet oxidation of acetic acid. Ind. Eng. Chem. Res. 37(4), 1203–1210 (1998)

    Article  CAS  Google Scholar 

  • Knon, H., Brennscheidt, T., Flörchinger, P.: Keramische Ultradünnwandträger für zukünftige Emissionsanforderungen. MTZ. 62(9), 662–666 (2001)

    Google Scholar 

  • Kreutzer, M.T., Du, P., Heiszwolf, J.J., Kapteijn, F., Moulijn, J.A.: Mass transfer characteristics of three-phase monolith reactors. Chem. Eng. Sci. 56(21–22), 6015–6023 (2001)

    Article  CAS  Google Scholar 

  • Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., Kleijn, C.R., Heiszwolf, J.J.: Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE J. 51(9), 2428–2440 (2005a)

    Article  CAS  Google Scholar 

  • Kreutzer, M.T., Bakker, J.J.W., Kapteijn, F., Moulijn, J.A., Verheijen, P.J.T.: Scaling-up multiphase monolith reactors: linking residence time distribution and feed maldistribution. Ind. Eng. Chem. Res. 44(14), 4898–4913 (2005b)

    Article  CAS  Google Scholar 

  • Kreutzer, M.T., Günther, A., Jensen, K.F.: Sample dispersion for segmented flow in microchannels with rectangular cross section. Anal. Chem. 80(5), 1558–1567 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, S., Jensen, K.F.: A pH-sensitive laser-induced fluorescence technique to monitor mass transfer in multiphase flows in microfluidic devices. Ind. Eng. Chem. Res. 51(26), 8999–9006 (2012)

    Article  CAS  Google Scholar 

  • Lacroix, M., Nguyen, P., Schweich, D., Pham-Huu, C., Savin-Poncet, S., Edouard, D.: Pressure drop measurements and modeling on SiC foams. Chem. Eng. Sci. 62(12), 3259–3267 (2007)

    Article  CAS  Google Scholar 

  • Lacroix, M., Dreibine, L., de Tymowski, B., Vigneron, F., Edouard, D., Bégin, D., Nguyen, P., Pham, C., Savin-Poncet, S., Luck, F., Ledoux, M.-J., Pham-Huu, C.: Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer–Tropsch synthesis catalyst. Appl. Catal. A. 397(1), 62–72 (2011)

    Article  CAS  Google Scholar 

  • Lali, F.: Characterization of foam catalysts as packing for tubular reactors. Chem. Eng. Process 105, 1–9 (2016)

    Google Scholar 

  • Lali, F.: A hydrodynamic study of cylindrical metal foam packings: residence time distribution and two phase pressure drop. Chem. Eng. Process 115, 1–10 (2017)

    Google Scholar 

  • Lämmermann, M., Schwieger, W., Freund, H.: Experimental investigation of gas-liquid distribution in periodic open cellular structures as potential catalyst supports. Catal. Today 273, 161–171 (2016)

    Article  CAS  Google Scholar 

  • Lämmermann, M., Horak, G., Schwieger, W., Freund, H.: Periodic open cellular structures (POCS) for intensification of multiphase reactors: liquid holdup and two-phase pressure drop. Chem. Eng. Process 126, 178–189 (2018)

    Google Scholar 

  • Langsch, R.: Miniaturized packed bed reactors for gas liquid solid reactions. Dissertation, Technische Universität Dresden (2014)

    Google Scholar 

  • Langsch, R., Haase, S., Lange, R.: Hydrodynamik und Stofftransport in einem Perlschnurreaktor für Gas/Flüssig/Fest-Reaktionen. Chem. Ing. Tech. 85(5), 642–655 (2013a)

    Article  CAS  Google Scholar 

  • Langsch, R., Haase, S., Lange, R.: Milli-packed-bed reactors as efficient production unit for hydrogenations in fine chemistry applications – impact of bed-geometry and flow direction. In: 9th European Congress of Chemical Engineering, Den Haag (2013b)

    Google Scholar 

  • Langsch, R., Zalucky, J., Haase, S., Lange, R.: Investigation of a packed bed in a mini channel with a low channel-to-particle diameter ratio: flow regimes and mass transfer in gas-liquid operation. Chem. Eng. Process 75, 8–18 (2014)

    Google Scholar 

  • Larachi, F., Belfares, L., Iliuta, I., Grandjean, B.P.A.: Heat and mass transfer in cocurrent gas-liquid packed beds. Analysis, recommendations, and new correlations. Ind. Eng. Chem. Res. 42(1), 222–242 (2003)

    Article  CAS  Google Scholar 

  • Lei, Z., Guo, Y., Dai, C., Zi, L., Chen, B.: Simulation of hydrodynamic and mass transfer performances in monolith channel. Catal. Today 276, 150–160 (2016)

    Article  CAS  Google Scholar 

  • Lévêque, J., Philippe, R., Zanota, M.L., Meille, V., Sarrazin, F., Baussaron, L., de Bellefon, C.: Hydrodynamics and mass transfer in a tubular reactor containing foam packings for intensification of G-L-S catalytic reactions in co-current up-flow configuration. Chem. Eng. Res. Des. 109, 686–697 (2016)

    Article  CAS  Google Scholar 

  • Li, W., Liu, K., Simms, R., Greener, J., Jagadeesan, D., Pinto, S., Günther, A., Kumacheva, E.: Microfluidic study of fast gas-liquid reactions. J. Am. Chem. Soc. 134(6), 3127–3132 (2012)

    Google Scholar 

  • Liu, W., Roy, S., Fu, X.D.: Gas-liquid catalytic hydrogenation reaction in small catalyst channel. AIChE J. 51(8), 2285–2297 (2005)

    Article  CAS  Google Scholar 

  • Lockhart, R.W., Martinelli, R.C.: Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog. 45(1), 39–49 (1949)

    Google Scholar 

  • Malsch, D.: Strömungsphänomene der tropfenbasierten Mikrofluidik. Dissertation, Technische Universität Illmenau (2014)

    Google Scholar 

  • Mas, N. de, Gunther, A., Kraus, T., Schmidt, M.A., Jensen, K.F.: Scaled-out multilayer gas-liquid microreactor with integrated velocimetry sensors. Ind. Eng. Chem. Res. 44(24), 8997–9013 (2005)

    Google Scholar 

  • Meille, V.: Review on methods to deposit catalysts on structured surfaces. Appl. Catal. A. 315, 1–17 (2006)

    Article  CAS  Google Scholar 

  • Metaxas, K.C., Papayannakos, N.G.: Kinetics and mass transfer of benzene hydrogenation in a trickle-bed reactor. Ind. Eng. Chem. Res. 45(21), 7110–7119 (2006)

    Article  CAS  Google Scholar 

  • Mohammed, I., Bauer, T., Schubert, M., Lange, R.: Hydrodynamic multiplicity in a tubular reactor with solid foam packings. Chem. Eng. J. 231, 334–344 (2013)

    Article  CAS  Google Scholar 

  • Mohammed, I., Bauer, T., Schubert, M., Lange, R.: Liquid-solid mass transfer in a tubular reactor with solid foam packings. Chem. Eng. Sci. 108, 223–232 (2014)

    Article  CAS  Google Scholar 

  • Mohammed, I., Bauer, T., Schubert, M., Lange, R.: Gas-liquid distribution in tubular reactors with solid foam packings. Chem. Eng. Process 88, 10–18 (2015)

    Google Scholar 

  • Montebelli, A., Visconti, C.G., Groppi, G., Tronconi, E., Cristiani, C., Ferreira, C., Kohler, S.: Methods for the catalytic activation of metallic structured substrates. Cat. Sci. Technol. 4(9), 2846–2870 (2014)

    Article  CAS  Google Scholar 

  • Moulijn, J.A., Kapteijn, F.: Monolithic reactors in catalysis: excellent control. Curr. Opin. Chem. Eng. 2(3), 346–353 (2013)

    Article  Google Scholar 

  • Mülheims, P., Kraushaar-Czarnetzki, B.: Temperature profiles and process performances of sponge packings as compared to spherical catalysts in the oxidation of o-xylene to phthalic anhydride. Ind. Eng. Chem. Res. 50(17), 9925–9935 (2011)

    Article  CAS  Google Scholar 

  • Müller, A.: Multiphase hydrogenation reactions in miniaturized reactors for fine chemicals. Dissertation, Technische Universität Dresden (2017)

    Google Scholar 

  • Nijhuis, T.A., Beers, A.E.W., Vergunst, T., Hoek, I., Kapteijn, F., Moulijn, J.A.: Preparation of monolithic catalysts. Catal. Rev. 43(4), 345–380 (2001)

    Article  CAS  Google Scholar 

  • Nijhuis, T.A., Dautzenberg, F.M., Moulijn, J.A.: Modeling of monolithic and trickle-bed reactors for the hydrogenation of styrene. Chem. Eng. Sci. 58(7), 1113–1124 (2003)

    Article  CAS  Google Scholar 

  • Pangarkar, K., Schildhauer, T.J., van Ommen, J.R., Nijenhuis, J., Kapteijn, F., Moulijn, J.A.: Structured packings for multiphase catalytic reactors. Ind. Eng. Chem. Res. 47(10), 3720–3751 (2008)

    Article  CAS  Google Scholar 

  • Parra-Cabrera, C., Achille, C., Kuhn, S., Ameloot, R.: 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chem. Soc. Rev. 47(1), 209–230 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Peng, W., Xu, M., Li, X., Huai, X., Liu, Z., Wang, H.: CFD study on thermal transport in open-cell metal foams with and without a washcoat: effective thermal conductivity and gas-solid interfacial heat transfer. Chem. Eng. Sci. 161, 92–108 (2017)

    Article  CAS  Google Scholar 

  • Ranade, V.V., Chaudhari, R.V., Gunjal, P.R.: Chapter 1 – Introduction. In: Ranade, V.V., Chaudhari, R.V., Gunjal, P.R. (Hrsg.) Trickle Bed Reactors, S. 1–23. Elsevier, Amsterdam (2011)

    Google Scholar 

  • Ratulowski, J., Chang, H.C.: Transport of gas-bubbles in capillaries. Phys. Fluids A. 1(10), 1642–1655 (1989)

    Article  CAS  Google Scholar 

  • Rebrov, E.V.: Two-phase flow regimes in microchannels. Theor. Found. Chem. Eng. 44(4), 355–367 (2010)

    Article  CAS  Google Scholar 

  • Reichelt, E., Jahn, M.: Generalized correlations for mass transfer and pressure drop in fiber-based catalyst supports. Chem. Eng. J. 325, 655–664 (2017)

    Article  CAS  Google Scholar 

  • Reichelt, E., Heddrich, M.P., Jahn, M., Michaelis, A.: Fiber-based structured materials for catalytic applications. Appl. Catal. A. 476(0), 78–90 (2014)

    Article  CAS  Google Scholar 

  • Reitze, A., Jürgensmeyer, N., Lier, S., Kohnke, M., Riese, J., Grünewald, M.: Roadmap for a smart factory: a modular, intelligent concept for the production of specialty chemicals. Angew. Chem. Int. Ed. 57(16), 4242–4247 (2018)

    Article  CAS  Google Scholar 

  • Saber, M., Huu, T.T., Pham-Huu, C., Edouard, D.: Residence time distribution, axial liquid dispersion and dynamic-static liquid mass transfer in trickle flow reactor containing β-SiC open-cell foams. Chem. Eng. J. 185–186, 294–299 (2012)

    Article  CAS  Google Scholar 

  • Sáez, A.E., Carbonell, R.G.: hydrodynamic parameters for gas-liquid cocurrent flow in packed beds. AIChE J. 31(1), 52–62 (1985)

    Article  Google Scholar 

  • Salman, W., Gavriilidis, A., Angeli, P.: A model for predicting axial mixing during gas-liquid Taylor flow in microchannels at low Bodenstein numbers. Chem. Eng. J. 101(1–3), 391–396 (2004)

    Article  CAS  Google Scholar 

  • Salmi, T., Mäki-Arvela, P., Toukoniitty, E., Kalantar Neyestanaki, A., Tiainen, L.-P., Lindfors, L.-E., Sjöholm, R., Laine, E.: Liquid-phase hydrogenation of citral over an immobile silica fibre catalyst. Appl. Catal. A. 196(1), 93–102 (2000)

    Article  CAS  Google Scholar 

  • Satterfield, C.N., Pelossof, A.A., Sherwood, T.K.: Mass transfer limitations in trickle-bed reactors. AIChE J. 15(2), 226ff (1969)

    Article  Google Scholar 

  • Scala, C. von, Wehrli, M., Gaiser, G.: Heat transfer measurements and simulation of KATAPAK-M® catalyst supports. Chem. Eng. Sci. 54(10), 1375–1381 (1999)

    Google Scholar 

  • Schubert, M., Haase, S., Lange, R., Kost, S., Salmi, T., Hampel, U.: Maldistribution susceptibility of monolith reactors: case study of glucose hydrogenation performance. AIChE J. 62(12), 4346–4364 (2016)

    Article  CAS  Google Scholar 

  • Shao, N., Gavriilidis, A., Angeli, P.: Flow regimes for adiabatic gas-liquid flow in microchannels. Chem. Eng. Sci. 64(11), 2749–2761 (2009)

    Article  CAS  Google Scholar 

  • Sheng, M., Yang, H., Cahela, D.R., Tatarchuk, B.J.: Novel catalyst structures with enhanced heat transfer characteristics. J. Catal. 281(2), 254–262 (2011)

    Article  CAS  Google Scholar 

  • Sobieszuk, P., Aubin, J., Pohorecki, R.: Hydrodynamics and mass transfer in gas-liquid flows in microreactors. Chem. Eng. Technol. 35(8), 1346–1358 (2012)

    Article  CAS  Google Scholar 

  • Sontti, S.G., Atta, A.: CFD analysis of Taylor bubble in a co-flow microchannel with Newtonian and non-Newtonian liquid. Ind. Eng. Chem. Res. 56(25), 7401–7412 (2017)

    Article  CAS  Google Scholar 

  • Stemmet, C.P.: Gas-liquid solid foam reactors: hydrodynamics and mass transfer. Dissertation, Technische Universiteit Eindhoven (2008)

    Google Scholar 

  • Stemmet, C.P., Jongmans, J.N., van der Schaaf, J., Kuster, B.F.M., Schouten, J.C.: Hydrodynamics of gas-liquid counter-current flow in solid foam packings. Chem. Eng. Sci. 60(22), 6422–6429 (2005)

    Article  CAS  Google Scholar 

  • Stemmet, C.P., van der Schaaf, J., Kuster, B.F.M., Schouten, J.C.: Solid foam packings for multiphase reactors: modelling of liquid holdup and mass transfer. Chem. Eng. Res. Des. 84(12 A), 1134–1141 (2006)

    Article  CAS  Google Scholar 

  • Stemmet, C.P., Meeuwse, M., van der Schaaf, J., Kuster, B.F.M., Schouten, J.C.: Gas-liquid mass transfer and axial dispersion in solid foam packings. Chem. Eng. Sci. 62(18–20), 5444–5450 (2007)

    Article  CAS  Google Scholar 

  • Stemmet, C.P., Bartelds, F., van der Schaaf, J., Kuster, B.F.M., Schouten, J.C.: Influence of liquid viscosity and surface tension on the gas-liquid mass transfer coefficient for solid foam packings in co-current two-phase flow. Chem. Eng. Res. Des. 86(10), 1094–1106 (2008)

    Article  CAS  Google Scholar 

  • Tanimu, A., Jaenicke, S., Alhooshani, K.: Heterogeneous catalysis in continuous flow microreactors: a review of methods and applications. Chem. Eng. J. 327, 792–821 (2017)

    Article  CAS  Google Scholar 

  • Templis, C.C., Papayannakos, N.G.: Liquid-to-particle mass transfer in a structured-bed minireactor. Chem. Eng. Technol. 40(2), 385–394 (2017a)

    Article  CAS  Google Scholar 

  • Templis, C.C., Papayannakos, N.G.: Modeling mass transfer in a three-phase minireactor filled with trilobe catalytic extrudates in series. Ind. Eng. Chem. Res. 56(45), 13322–13333 (2017b)

    Article  CAS  Google Scholar 

  • Thulasidas, T.C., Abraham, M.A., Cerro, R.L.: Bubble-train flow in capillaries of circular and square cross-section. Chem. Eng. Sci. 50(2), 183–199 (1995)

    Article  CAS  Google Scholar 

  • Thulasidas, T.C., Abraham, M.A., Cerro, R.L.: Flow patterns in liquid slugs during bubble-train flow inside capillaries. Chem. Eng. Sci. 52(17), 2947–2962 (1997)

    Article  CAS  Google Scholar 

  • Thulasidas, T.C., Abraham, M.A., Cerro, R.L.: Dispersion during bubble-train flow in capillaries. Chem. Eng. Sci. 54(1), 61–76 (1999)

    Article  CAS  Google Scholar 

  • Tomašić, V., Jović, F.: State-of-the-art in the monolithic catalysts/reactors. Appl. Catal. A. 311(0), 112–121 (2006)

    Article  CAS  Google Scholar 

  • Tourvieille, J.-N., Philippe, R., de Bellefon, C.: Milli-channel with metal foams under an applied gas–liquid periodic flow: external mass transfer performance and pressure drop. Chem. Eng. J. 267, 332–346 (2015a)

    Article  CAS  Google Scholar 

  • Tourvieille, J.-N., Philippe, R., de Bellefon, C.: Milli-channel with metal foams under an applied gas-liquid periodic flow: flow patterns, residence time distribution and pulsing properties. Chem. Eng. Sci. 126, 406–426 (2015b)

    Article  CAS  Google Scholar 

  • Trachsel, F., Gunther, A., Khan, S., Jensen, K.F.: Measurement of residence time distribution in microfluidic systems. Chem. Eng. Sci. 60(21), 5729–5737 (2005)

    Article  CAS  Google Scholar 

  • Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., Sadowski, D.L.: Gas-liquid two-phase flow in microchannels – part I: two-phase flow patterns. Int. J. Multiphase Flow 25(3), 377–394 (1999)

    Article  CAS  Google Scholar 

  • Tsoligkas, A.N., Simmons, M.J.H., Wood, J., Frost, C.G.: Kinetic and selectivity studies of gas-liquid reaction under Taylor flow in a circular capillary. Catal. Today 128(1–2), 36–46 (2007)

    Article  CAS  Google Scholar 

  • Twigg, M.V., Richardson, J.T.: Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 46(12), 4166–4177 (2007)

    Article  CAS  Google Scholar 

  • Vaitsis, E., Chadwick, D., Alpay, E.: Slug flow hydrodynamics in the presence of catalyst rods. Chem. Eng. Res. Des. 82(A5), 653–658 (2004)

    Article  CAS  Google Scholar 

  • Vervloet, D., Kapteijn, F., Nijenhuis, J., van Ommen, J.R.: Process intensification of tubular reactors: considerations on catalyst hold-up of structured packings. Catal. Today 216(0), 111–116 (2013)

    Article  CAS  Google Scholar 

  • Visconti, C.G., Groppi, G., Tronconi, E.: Highly conductive „packed foams“: a new concept for the intensification of strongly endo- and exo-thermic catalytic processes in compact tubular reactors. Catal. Today 273, 178–186 (2016)

    Article  CAS  Google Scholar 

  • Vonortas, A., Hipolito, A., Rolland, M., Boyer, C., Papayannakos, N.: Fluid flow characteristics of string reactors packed with spherical particles. Chem. Eng. Technol. 34(2), 208–216 (2011)

    Article  CAS  Google Scholar 

  • Wang, X., Yong, Y.M., Yang, C., Mao, Z.S., Li, D.D.: Investigation on pressure drop characteristic and mass transfer performance of gas-liquid flow in micro-channels. Microfluid. Nanofluid. 16(1–2), 413–423 (2014)

    Article  CAS  Google Scholar 

  • Wenmakers, P.W.A.M., van der Schaaf, J., Kuster, B.F.M., Schouten, J.C.: Comparative modeling study on the performance of solid foam as a structured catalyst support in multiphase reactors. Ind. Eng. Chem. Res. 49(11), 5353–5366 (2010a)

    Article  CAS  Google Scholar 

  • Wenmakers, P.W.A.M., van der Schaaf, J., Kuster, B.F.M., Schouten, J.C.: Liquid-solid mass transfer for cocurrent gas-liquid upflow through solid foam packings. AIChE J. 56(11), 2923–2933 (2010b)

    Article  CAS  Google Scholar 

  • Winterbottom, M., Marwan, H., Natividad, R.: Selectivity, hydrodynamics and solvent effects in a monolith cocurrent downflow contactor (CDC) reactor. Can. J. Chem. Eng. 81(3–4), 838–845 (2003)

    CAS  Google Scholar 

  • Wörner, M.: Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid 12(6), 841–886 (2012)

    Google Scholar 

  • Wörner, M., Ghidersa, B., Onea, A.: A model for the residence time distribution of bubble-train flow in a square mini-channel based on direct numerical simulation results. Int. J. Heat Fluid Flow 28(1), 83–94 (2007)

    Article  CAS  Google Scholar 

  • Xiangchun, Q., Hanchang, S., Yongming, Z., Jianlong, W., Yi, Q.: Biodegradation of 2,4-dichlorophenol in an air-lift honeycomb-like ceramic reactor. Process Biochem. 38(11), 1545–1551 (2003)

    Article  CAS  Google Scholar 

  • Yawalkar, A.A., Sood, R., Kreutzer, M.T., Kapteijn, F., Moulijn, J.A.: Axial mixing in monolith reactors: effect of channel size. Ind. Eng. Chem. Res. 44(7), 2046–2057 (2005)

    Article  CAS  Google Scholar 

  • Yue, J.: Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal. Today 308, 3–19 (2018)

    Article  CAS  Google Scholar 

  • Yue, J., Boichot, R., Luo, L.G., Gonthier, Y., Chen, G.W., Yuan, Q.: Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors. AIChE J. 56(2), 298–317 (2010)

    CAS  Google Scholar 

  • Zalucky, J., Möller, F., Schubert, M., Hampel, U.: Flow regime transition in open-cell solid foam packed reactors: adaption of the relative permeability concept and experimental validation. Ind. Eng. Chem. Res. 54(40), 9708–9721 (2015)

    Article  CAS  Google Scholar 

  • Zalucky, J., Schubert, M., Lange, R., Hampel, U.: Dynamic liquid–solid mass transfer in solid foam packed reactors at trickle and pulse flow. Ind. Eng. Chem. Res. 56(45), 13190–13205 (2017a)

    Article  CAS  Google Scholar 

  • Zalucky, J., Wagner, M., Schubert, M., Lange, R., Hampel, U.: Hydrodynamics of descending gas-liquid flows in solid foams: liquid holdup, multiphase pressure drop and radial dispersion. Chem. Eng. Sci. 168, 480–494 (2017b)

    Article  CAS  Google Scholar 

  • Zapico, R.R., Marín, P., Díez, F.V., Ordóñez, S.: Liquid hold-up and gas-liquid mass transfer in an alumina open-cell foam. Chem. Eng. Sci. 143, 297–304 (2016a)

    Google Scholar 

  • Zapico, R.R., Marín, P., Díez, F.V., Ordóñez, S.: Performance of ceramic foams as gas-liquid contactors for phenol wet oxidation in the trickle regime. Catal. Today 273, 172–177 (2016b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Jahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jahn, M., Reichelt, E., Haase, S. (2019). Reaktoren für Dreiphasen-Reaktionen: Monolithreaktoren. In: Reschetilowski, W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56444-8_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56444-8_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56444-8

  • Online ISBN: 978-3-662-56444-8

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics