Skip to main content

Reaktoren für Fluid-Feststoff-Reaktionen: Festbettreaktoren

  • Living reference work entry
  • First Online:
Handbuch Chemische Reaktoren

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

Zusammenfassung

Festbettreaktoren sind der am häufigsten eingesetzte Reaktortyp in der chemischen und petrochemischen Industrie. Auch für die mobile und stationäre Abgasreinigung kommen Festbettreaktoren zum Einsatz. Allen Festbettreaktoren ist gemeinsam, dass ein Feststoff, in der Regel ein Katalysator, im Reaktor räumlich fixiert ist, und von der Reaktionsmischung durch- oder überströmt wird. Das vorliegende Buchkapitel gibt einen Überblick über diesen wichtigen Reaktortyp, wobei der Fokus auf katalytischen Festbettreaktoren für Gasreaktionen liegt. Nach einer kurzen Einführung werden katalytische Festbettreaktoren nach der Art der beteiligten Phasen, der Struktur der Katalysatorphase und der Temperaturführung klassifiziert. Das Funktionsprinzip der verschiedenen Reaktortypen wird anhand von Beispielen erläutert. Neben Festbettreaktoren in der Industrie werden auch Festbettreaktoren in Labor und Forschung behandelt, welche zum Hochdurchsatz-Screening, zur Messung kinetischer Daten oder zur operando-Spektroskopie an Katalysatoren zum Einsatz kommen. Anschließend wird die mathematische Modellierung von Festbettreaktoren besprochen. Die Gliederung der verschiedenen Modellansätze umfasst die Dimension der Modellierungsdomain, die mathematische Struktur der Gleichungen, die Beschreibung von Transportprozessen, die Zahl und Art der beteiligten Phasen und die Beschreibung der Reaktionskinetik. Neben den klassischen pseudo-homogenen, pseudo-heterogenen und heterogenen Reaktormodellen werden auch moderne Modellierungsansätze wie die CFD-Simulation katalytischer Festbettreaktoren anhand von Beispielen vorgestellt. Zum Abschluss wird auf den instationären Betrieb und das dynamische Verhalten von Festbettreaktoren eingegangen. Dabei werden die parametrische Sensitivität, das thermische Durchgehen und die periodische Flussumkehr näher beleuchtet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Adesina, A.A., Hudgins, R.R., Silveston, P.L.: Fischer-tropsch synthesis under periodic operation. Catal. Today 25, 127–144 (1995)

    Article  CAS  Google Scholar 

  • Adler, R.: Stand der simulation von heterogen-gaskatalytischen reaktionsabläufen in festbettreaktoren – teil 1. Chem. Ing. Tech. 72(6), 555–564 (2000a)

    Article  CAS  Google Scholar 

  • Adler, R.: Stand der simulation von heterogen-gaskatalytischen reaktionsabläufen in festbettreaktoren – teil 2. Chem. Ing. Tech. 72(7), 688–699 (2000b)

    Article  Google Scholar 

  • Al-Dahhan, M.H., Larachi, F., Dudukovic, M., Laurent, A.: High-pressure trickle-bed reactors: a review. Ind. Eng. Chem. Res. 36, 3292–3314 (1997)

    Article  CAS  Google Scholar 

  • Andrigo, P., Bagatin, R., Pagani, G.: Fixed bed reactors. Catal. Today 52, 197–221 (1999)

    Article  CAS  Google Scholar 

  • Apple, M.: Ammonia, 2. production processes. In: Ullmann’s Encyclopedia of Industrial Chemistry, Bd. 3, 7. Aufl., S. 139–224. Wiley-VCH Verlag GmbH & Co. KGaA (2012)

    Google Scholar 

  • Aris, R.: The Optimal Design of Chemical Reactors. Academic (1961); Aris, R.: The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts: The Theory of the Steady State, Bd. I. Clarendon Press (1975a)

    Google Scholar 

  • Aris, R.: The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts: Questions of Uniqueness, Stability, and Transient Behaviour. Clarendon Press (1975)

    Google Scholar 

  • Aris, R., Amundson, N.R.: Some remarks on longitudinal mixing or diffusion in fixed beds. AIChE J. 3(2), 280–282 (1957)

    Article  CAS  Google Scholar 

  • Banares, M.A.: Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 100, 71–77 (2005)

    Article  CAS  Google Scholar 

  • Bartholomew, C.H., Farrauto, R.J.: Fundamentals of Industrial Catalytic Processes, 2. Aufl., S. 571. Wiley-Interscience (2006). Chapter 8

    Google Scholar 

  • Berty, J.M.: Reactor for vapor-phase catalytic studies. Chem. Eng. Prog. 70(5), 78–84 (1974); Bhan, A., Delgass, W.N.: Propane aromatization over HZSM-5 and Ga/HZSM-5 catalysts. Catal. Rev. 50, 19–151 (2008)

    Google Scholar 

  • Borsekov, G.K., Matros, Y.S.: Unsteady-state performance of heterogeneous catalytic reactions. Catal. Rev. Sci. Eng. 25(4), 551–590 (1983)

    Google Scholar 

  • Boudart, M.: Classical catalytic kinetics: a placebo or the real thing? Ind. Eng. Chem. Fundam. 25, 656–658 (1986)

    Article  CAS  Google Scholar 

  • Brueckner, A.: Looking on heterogeneous catalytic systems from different perspectives: multitechnique approaches as a new challenge for in situ studies. Catal. Rev. 45(1), 97–150 (2003)

    Article  CAS  Google Scholar 

  • Bunnel, D.G., Irvin, H.B., Olson, R.W., Smith, J.M.: Effective thermal conductivities in gas-solid systems. Ind. Eng. Chem. 41(9), 1977–1981 (1949)

    Article  Google Scholar 

  • Carberry, J.J.: Physico-chemical Aspects of Mass and Heat Transfer in Heterogeneous Catalysis, Bd. 8, S. 131–171. Springer (1987). Chapter 3

    Google Scholar 

  • Chorkendorff, I., Niemantsverdriet, J.W.: Concepts of Modern Catalysis and Kinetics. Wiley-VCH Verlag GmbH & Co. KGaA (2003)

    Google Scholar 

  • Dahl, S., Logadottir, A., Jacobsen, C.J.H., Nørskov, J.K.: Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis. Appl. Catal. A Gen. 222, 19–29 (2001)

    Article  CAS  Google Scholar 

  • Dalle Nogare, D., Degenstein, N.J., Horn, R., Canu, P., Schmidt, L.D.: Modeling spatially resolved profiles of methane partial oxidation on a Rh foam catalyst with detailed chemistry. J. Catal. 258, 131–142 (2008)

    Article  CAS  Google Scholar 

  • Davidson, P.A.: Turbulence: An Introduction for Scientists and Engineers, 1. Aufl. Oxford University Press (2004)

    Google Scholar 

  • Deans, H.A., Lapidus, L.: A computational model for predicting and correlating the behavior of fixed-bed reactors. I. Derivation of model for nonreactive systems. AIChE J. 6, 656 (1960a)

    Article  CAS  Google Scholar 

  • Deans, H.A., Lapidus, L.: A computational model for predicting and correlating the behavior of fixed-bed reactors. II. Extension to chemically reactive systems. AIChE J. 6, 663 (1960b)

    Article  CAS  Google Scholar 

  • Delgado, J.M.P.Q.: A critical review of dispersion in packed beds. Heat Mass Transf. 42, 279–310 (2006)

    Article  CAS  Google Scholar 

  • Della Torre, A., Lucci, F., Montenegro, G., Onorati, A., Dimopoulos Eggenschwiler, P., Tronconi, E., Groppi, G.: CFD modeling of catalytic reactions in open-cell foam substrates. Comput. Chem. Eng. 92, 55–63 (2016)

    Article  CAS  Google Scholar 

  • Deutschmann, O. (Hrsg.): Modeling and Simulation of Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System. Wiley-VCH Verlag GmbH & Co. KGaA (2012)

    Google Scholar 

  • van Diepen, A.E., Moulijn, J.A., Makkee, M.: Chemical Process Technology, S. 137. Wiley (2013). Chapter 5

    Google Scholar 

  • Dixon, A.G.: Fixed bed catalytic reactor modelling – the radial heat transfer problem. Can. J. Chem. Eng. 90, 507–527 (2012)

    Article  CAS  Google Scholar 

  • Dixon, A.G., Nijemeisland, M., Stitt, E.H.: Packed tubular reactor modeling and catalyst design using computational fluid dynamics. Adv. Chem. Eng. 31, 305–387 (2006)

    Google Scholar 

  • Dixon, A.G., Ertan Taskin, M., Nijemeisland, M., Stitt, E.H.: CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field. Ind. Eng. Chem. Res. 49, 9012–9025 (2010)

    Article  CAS  Google Scholar 

  • Dong, Y., Keil, F.J., Korup, O., Rosowski, F., Horn, R.: Effect of the catalyst pore structure on fixed-bed reactor performance of partial oxidation of n-butane: a simulation study. Chem. Eng. Sci. 142, 299–309 (2016)

    Article  CAS  Google Scholar 

  • Dong, Y., Geske, M., Korup, O., Ellenfeld, N., Rosowski, F., Dobner, C., Horn, R.: What happens in a catalytic fixed-bed reactor for n-butane oxidation to maleic anhydride? Insights from spatial profile measurements and particle resolved CFD simulations. Chem. Eng. J. 350, 799–811 (2018a)

    Article  CAS  Google Scholar 

  • Dong, Y., Korup, O., Gerdts, J., Roldán Cuenya, B., Horn, R.: Microtomography-based CFD modeling of a fixed-bed reactor with an open-cell foam monolith and experimental verification by reactor profile measurements. Chem. Eng. J. 353, 176–188 (2018b)

    Article  CAS  Google Scholar 

  • Dudukovic, M.P., Larachi, F., Mills, P.L.: Multiphase catalytic reactors: a perspective on current knowledge and future trends. Catal. Rev. Sci. Eng. 44(1), 123–246 (2002)

    Article  CAS  Google Scholar 

  • Eigenberger, G., Ruppel, W.: Catalytic fixed-bed reactors. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012)

    Google Scholar 

  • Eigenberger, G., Kolios, G., Nieken, U.: Thermal pattern formation and process intensification in chemical reaction engineering. Chem. Eng. Sci. 62, 4825–4841 (2007)

    Article  CAS  Google Scholar 

  • Elnashaie, S.S.E.H., Elshishini, S.S.: Modelling, Simulation and Optimization of Industrial Fixed Bed Catalytic Reactors. Gordon and Breach Science Publishers (1993a)

    Google Scholar 

  • Elnashaie, S.S.E.H., Elshishini, S.S.: Effect of diffusional resistances. The single pellet problem, Chapter 5. In: Modelling, Simulation and Optimization of Industrial Fixed Bed Catalytic Reactors, Volume 7 of Topics in Chemical Engineering, S. 139–242. Gordon and Breach Science Publishers (1993b)

    Google Scholar 

  • Eppinger, T., Seidler, K., Kraume, M.: DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chem. Eng. J. 166, 324–331 (2011)

    Article  CAS  Google Scholar 

  • Ergun, S., Orning, A.A.: Fluid flow through randomly packed columns and fluidized beds. Ind. Eng. Chem. 41(6), 1179–1184 (1949)

    Article  CAS  Google Scholar 

  • Felthouse, T.R., Burnett, J.C., Mitchell, S.F., Mummey, M.J.: Maleic anhydride, maleic acid, and fumaric acid. In: Kirk-Othmer Encyclopedia of Chemical Technology, Bd. 15, S. 893. Wiley (1995)

    Google Scholar 

  • Ferziger, J.H., Peric, M., Street, R.L.: Computational Methods for Fluid Dynamics, 4. Aufl. Springer (2019)

    Google Scholar 

  • Franz, A.W., Kronemayer, H., Pfeiffer, D., Pilz, R.D., Reuss, G., Disteldorf, W., Garmer, A.O., Hilt, A.: Formaldehyde. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA (2016)

    Google Scholar 

  • Frenken, J., Groot, I. (Hrsg.): Operando Research in Heterogeneous Catalysis. Springer (2017)

    Google Scholar 

  • Froment, G.F., Hofmann, H.P.K.: Design of fixed-bed gas-solid catalytic reactors, Chapter 6. In: Carberry, J.J., Varma, A. (Hrsg.) Chemical Reaction and Reactor Engineering, Volume 26 of Chemical Industries. Marcel Dekker (1986)

    Google Scholar 

  • Froment, G., DeWilde, J., Bischoff, K.: Chemical Reactor Analysis and Design, 3. Aufl., S. 522. Wiley (2011). Chapter 11

    Google Scholar 

  • Gail, E., Gos, S., Kulzer, R., Loroesch, J., Sauer, M., Kellens, R., Reddy, J., Steier, N., Haspenpusch, W.: Cyano compounds, inorganic. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley (2011)

    Google Scholar 

  • Geske, M., Korup, O., Horn, R.: Resolving kinetics and dynamics of a catalytic reaction inside a fixed bed reactor by combined kinetic and spectroscopic profiling. Catal. Sci. Technol. 3, 169–175 (2013)

    Article  CAS  Google Scholar 

  • Giese, M., Rottschäfer, K., Vortmeyer, D.: Measured and modeled superficial flow profiles in packed beds with liquid flow. AIChE J. 44(2), 484–490 (1998)

    Article  CAS  Google Scholar 

  • Goldsmith, C.F., West, R.H.: Automatic generation of microkinetic mechanisms for heterogeneous catalysis. J. Phys. Chem. C. 121, 9970–9981 (2017)

    Article  CAS  Google Scholar 

  • Grub, J., Löser, E.: Butadiene. In: Ullmann’s Encyclopedia of Industrial Chemistry, Bd. 6, S. 381–396. Wiley-VCH Verlag GmbH & Co. KGaA (2012)

    Google Scholar 

  • Gunjal, P.R., Kashid, M.N., Ranade, V.V., Chaudhari, R.V.: Hydrodynamics of trickle-bed reactors: experiments and CFD modeling. Ind. Eng. Chem. Res. 44, 6278–6294 (2005)

    Article  CAS  Google Scholar 

  • Hagemeyer, A., Strasser, P., Volpe, A.F.: High-Throughput Screening in Heterogeneous Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA (2004)

    Google Scholar 

  • Hartig, F., Keil, F.J.: Large-scale spherical fixed bed reactors: modeling and optimization. Ind. Eng. Chem. Res. 32, 424–437 (1993)

    Article  CAS  Google Scholar 

  • Haw, J.F. (Hrsg.): In-situ Spectroscopy in Heterogeneous Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA (2002)

    Google Scholar 

  • Hlavacek, V.: Aspects in design of packed catalytic reactors. Ind. Eng. Chem. 62(7), 9 (1970)

    Article  Google Scholar 

  • Hlavacek, V., Votruba, J.: Steady-state operation of fixed-bed reactors and monolithic structures. In: Chemical Reactor Theory: A Review, S. 314–404. Prentice-Hall (1977)

    Google Scholar 

  • Hlavacek, V., Puszynski, J.A., Viljoen, H.J., Gatica, J.E.: Model reactors and their design equations, Chapter 4. In: Ullmann’s Encyclopedia of Industrial Chemistry, Bd. 23, S. 421–467. Wiley-VCH Verlag GmbH & Co. KGaA (2012)

    Google Scholar 

  • Horn, R., Williams, K.A., Degenstein, N.J., Bitsch-Larsen, A., Dalle Nogare, D., Tupy, S.A., Schmidt, L.D.: Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts: oxidation and reforming zones, transport effects and approach to thermodynamic equilibrium. J. Catal. 249, 380–393 (2007)

    Article  CAS  Google Scholar 

  • Hougen, O.A., Watson, K.A.: Chemical Process Principles: Part Three – Kinetics and Catalysis. Wiley (1947)

    Google Scholar 

  • Hunger, M., Weitkamp, J.: In situ IR, NMR, EPR, and UV/Vis spectroscopy: tools for new insight into the mechanisms of heterogeneous catalysis. Angew. Chem. Int. Ed. 40, 2954–2971 (2001)

    Article  CAS  Google Scholar 

  • Iliuta, I., Larachi, F.: Three-phase catalytic reactors, Chapter 5. In: Önsan, Z.I., Avci, A.K. (Hrsg.) Multiphase Catalytic Reactors. Wiley (2016)

    Google Scholar 

  • Jacobsen, C.J.H., Dahl, S., Boisen, A., Clausen, B.S., Topsøe, H., Logadottir, A., Nørskov, J.K.: Optimal catalyst curves: connecting density functional theory calculations with industrial reactor design and catalyst selection. J. Catal. 205, 382–387 (2002)

    Article  CAS  Google Scholar 

  • Jakobsen, H.A.: Chemical Reactor Modeling Multiphase Reactive Flows, 2. Aufl. Springer (2014)

    Google Scholar 

  • James, D.H., Castor, W.M.: Styrene. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley (2011)

    Google Scholar 

  • Jennings, J.R. (Hrsg.): Catalytic Ammonia Synthesis: Fundamentals and Practice. Springer Science + Business Media, LLC (1991)

    Google Scholar 

  • Jess, A., Wasserscheid, P.: Chemical Technology, S. 586. Wiley-VCH Verlag GmbH & Co. KGaA (2013a). Chapter 6

    Google Scholar 

  • Jess, A., Wasserscheid, P.: Chemical Technology, S. 365–368. Wiley-VCH Verlag GmbH & Co. KGaA (2013b). Chapter 4

    Google Scholar 

  • Jurtz, N., Kraume, M., Wehinger, G.D.: Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). Rev. Chem. Eng. 35(2), 139–190 (2018)

    Article  Google Scholar 

  • Kahl, T., Schröder, K.-W., Lawrence, F.R., Marshall, W.J., Höke, H., Jäckh, R.: Aniline. In: Ullmann’s Encyclopedia of Industrial Chemistry, Bd. 3, S. 465–478. Wiley-VCH Verlag GmbH & Co. KGaA (2012)

    Google Scholar 

  • Kapteijn, F., Moulijn, J.: Laboratory catalytic reactors: aspects of catalyst testing, Chapter 9.1. In: Handbook of Heterogeneous Catalysis, 2. Aufl. Wiley-VCH Verlag GmbH & Co. KGaA (2008)

    Google Scholar 

  • Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically Reacting Flow & Theory Practice. Wiley-Interscience (2003)

    Google Scholar 

  • Keil, F.: Diffusion und Chemische Reaktionen in der Gas/Feststoff-Katalyse. Springer (1999)

    Google Scholar 

  • Kolios, G.: Regenerative fixed-bed processes: approximate analysis and efficient computation of the cyclic steady state. Habilitationsschrift, Universität Stuttgart (2013)

    Google Scholar 

  • Kolios, G., Fraunhammer, J., Eigenberger, G.: Autothermal fixed-bed reactor concepts. Chem. Eng. Sci. 55, 5945–5967 (2000)

    Article  CAS  Google Scholar 

  • LeBlanc, J.R., Schneider, R.V., Strait, R.B.: Methanol Production and Use, S. 64. Marcel Dekker (1994). Chapter 3

    Google Scholar 

  • Livio, D., Diehm, C., Donazzi, A., Beretta, A., Deutschmann, O.: Catalytic partial oxidation of ethanol over Rh/Al2O3: spatially resolved temperature and concentration profiles. Appl. Catal. A Gen. 467, 530–541 (2013)

    Article  CAS  Google Scholar 

  • Mason, E.A., Malinauskas, A.P.: Gas Transport in Porous Media: The Dusty-Gas Model. Elsevier (1983)

    Google Scholar 

  • Matros, Y.S.: Catalytic Processes Under Unsteady-State Conditions, Bd. 43. Elsevier (1989)

    Google Scholar 

  • Mestl, G., Lesser, D., Turek, T.: Optimum performance of vanadyl pyrophosphate catalysts. Top. Catal. 59, 1533–1544 (2016)

    Article  CAS  Google Scholar 

  • Meunier, F.C.: The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions. Chem. Soc. Rev. 39, 4602–4614 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Mhadeshwar, A.B.., Wang, H., Vlachos, D.G.: Thermodynamic consistency in microkinetic development of surface reaction mechanisms. J. Phys. Chem. B. 107, 12721–12733 (2003)

    Article  CAS  Google Scholar 

  • Modest, M.F.: Radiative Heat Transfer, 3. Aufl. Elsevier (2013)

    Google Scholar 

  • Morgan, K., Touitou, J., Choi, J.-S., Coney, C., Hardcare, C., Pihl, J.A., Stere, C.E., Kim, M.-Y., Stewart, C., Goguet, A., Partridge, W.P.: Evolution and enabling capabilities of spatially resolved techniques for the characterization of heterogeneously catalyzed reactions. ACS Catal. 6, 1356–1381 (2016)

    Article  CAS  Google Scholar 

  • Motagamwala, A.H., Ball, M.R., Dumesic, J.A.: Microkinetic analysis and scaling relations for catalyst design. Annu. Rev. Chem. Biomol. Eng. 9, 413–450 (2018)

    Article  PubMed  Google Scholar 

  • Mueller, H.: Sulfuric acid and sulfur trioxide. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley (2000)

    Google Scholar 

  • Norskov, J.K., Bligaard, T., Rossmeisl, J., Christensen, C.H.: Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Önsan, Z.I., Avci, A.K. (Hrsg.): Multiphase Catalytic Reactors. Wiley (2016)

    Google Scholar 

  • Pangarkar, K., Schildhauer, T.J., Ruud van Ommen, J., Nijenhuis, J., Kapteijn, F., Moulijn, J.A.: Structured packings for multiphase catalytic reactors. Ind. Eng. Chem. Res. 47, 3720–3751 (2008)

    Article  CAS  Google Scholar 

  • Rahimpour, M.R., Jafari, M., Iranshahi, D.: Progress in catalytic naphtha reforming process: a review. Appl. Energy. 109, 79–93 (2013)

    Article  CAS  Google Scholar 

  • Ranade, V.V., Chaudhari, R.V., Gunjal, P.R.: Trickle Bed Reactors. Elsevier (2011)

    Google Scholar 

  • Rase, H.F.: Fixed-Bed Reactor Design and Diagnostics. Butterworths (1990)

    Google Scholar 

  • Rebsdat, S., Mayer, D.: Ethylene oxide. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley (2001)

    Google Scholar 

  • Rodriguez, J.A., Hanson, J.C., Chupas, P.J. (Hrsg.): In-situ Characterization of Heterogeneous Catalysts. Wiley (2013)

    Google Scholar 

  • Salciccioli, M., Stamatakis, M., Caratzoulas, S., Vlachos, D.G.: A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem. Eng. Sci. 66, 4319–4355 (2011)

    Article  CAS  Google Scholar 

  • Sanchez Marcano, J.G., Tsotsis, T.T.: Catalytic Membranes and Membrane Reactors. Wiley-VCH Verlag GmbH & Co. KGaA (2002)

    Google Scholar 

  • Schluender, E.U.: Wärme- und stoffübertragung zwischen durchströmten schüttungen und darin eingebetteten einzelkörpern. Chem. Ing. Tech. 38(9), 967–979 (1966)

    Article  CAS  Google Scholar 

  • Schwarz, H., Dong, Y., Horn, R.: Catalytic methane combustion on a Pt gauze: laser-induced fluoreszenz spectroscopy, species profiles, and simulations. Chem. Eng. Technol. 39(11), 2011–2019 (2016)

    Article  CAS  Google Scholar 

  • Silveston, P.L., Hudgins, R.R. (Hrsg.): Periodic Operation of Reactors. Elsevier (2013)

    Google Scholar 

  • Smit, B., Maesen, T.L.M.: Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem. Rev. 108, 4125–4184 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Stegehake, C., Riese, J., Grünewald, M.: Aktueller stand zur modellierung von festbettreaktoren und möglichkeiten zur experimentellen validierung. Chem. Ing. Tech. 90(11), 1739–1758 (2018)

    Article  CAS  Google Scholar 

  • Stoltze, P.: Surface science as the basis for the understanding of the catalytic synthesis of ammonia. Phys. Scr. 36, 824–864 (1987)

    Article  CAS  Google Scholar 

  • Stoltze, P.: Microkinetic simulation of catalytic reactions. Prog. Surf. Sci. 65, 65–150 (2000)

    Article  CAS  Google Scholar 

  • Thiemann, M., Scheibler, E., Wiegand, K.W.: Nitric acid, nitrous acid, and nitrogen oxides. In: Ullmann’s Encyclopedia of Industrial Chemistry, Bd. 24, S. 177–225. Wiley-VCH Verlag GmbH & Co. KGaA (2012)

    Google Scholar 

  • Topsøe, H.: Developments in operando studies and in situ characterization of heterogeneous catalysts. J. Catal. 216, 155–164 (2003)

    Article  CAS  Google Scholar 

  • Tsakoumis, N.E., York, A.P.E., Chen, D., Ronning, M.: Catalyst characterisation techniques and reaction cells operating at realistic conditions; towards acquisition of kinetically relevant information. Catal. Sci. Technol. 5, 4859–4883 (2015)

    Article  CAS  Google Scholar 

  • Tsotsas, E.: Heat and Mass Transfer in Packed Beds with Fluid Flow. Springer (2010). Chapter M7

    Google Scholar 

  • Twigg, M.V., Richardson, J.T.: Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 46, 4166–4177 (2007)

    Article  CAS  Google Scholar 

  • Urakawa, A., Baiker, A.: Space-resolved profiling relevant in heterogeneous catalysis. Top. Catal. 52, 1312–1322 (2009)

    Article  CAS  Google Scholar 

  • Urschey, J., Weiss, P.-A.W., Scheidtmann, J., Richter, R., Maier, W.F.: A low cost reactor for high-throughput activity screening of heterogeneous catalysts by mass spectrometry. Solid State Sci. 5, 909–916 (2003)

    Article  CAS  Google Scholar 

  • Versteeg, H., Malalasekra, W.: An Introduction to Computational Fluid Dynamics – The Finite Volume Method, 2. Aufl. Pearson (2007)

    Google Scholar 

  • Vieira, R., Pham-Huu, C., Keller, N., Ledoux, M.J.: New carbon nanofiber/graphite felt composite for use as a catalyst support for hydrazine catalytic decomposition. Chem. Commun. 9, 954–955 (2002)

    Article  CAS  Google Scholar 

  • Votsmeier, M., Kreuzer, T., Gieshoff, J., Lepperhoff, G.: Automobile exhaust control. In: Ullmann’s Encyclopedia of Industrial Chemistry, Bd. 4, S. 407–424. Wiley-VCH Verlag GmbH & Co. KGaA (2012)

    Google Scholar 

  • Wakao, N., Smith, J.: Diffusion in catalyst pellets. Chem. Eng. Sci. 17(11), 825–834 (1962)

    Article  CAS  Google Scholar 

  • Wakao, N., Smith, J.: Diffusion and reaction in porous catalysts. Ind. Eng. Chem. Fundam. 3(2), 123–127 (1964)

    Article  CAS  Google Scholar 

  • Weckhuysen, B.M.: Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem. Commun. 2, 97–110 (2002)

    Article  CAS  Google Scholar 

  • Weckhuysen, B.M.: Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009)

    Article  CAS  Google Scholar 

  • Wehinger, G.D., Kraume, M.: CFD als designtool für festbettreaktoren mit kleinem rohr-zu-pelletdurchmesser-verhältnis: Heute oder in zukunft? Chem. Ing. Tech. 89(4), 447–453 (2017)

    Article  CAS  Google Scholar 

  • Wehinger, G.D., Eppinger, T., Kraume, M.: Evaluating catalytic fixed-bed reactors for dry reforming of methane with detailed CFD. Chem. Ing. Tech. 87(6), 734–745 (2015)

    Article  CAS  Google Scholar 

  • Wehinger, G.D., Kraume, M., Berg, V., Korup, O., Mette, K., Schlögl, R., Behrens, M., Horn, R.: Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations. AIChE J. 62(12), 4436–4452 (2016)

    Article  CAS  Google Scholar 

  • Weissermel, K., Arpe, H.-J.: Industrial Organic Chemistry, 4. Aufl., S. 170. Wiley-VCH Verlag GmbH & Co. KGaA (2003)

    Google Scholar 

  • Winterberg, M.: Modellierung des wärme- und stofftransports in durchströmten festbetten mit homogenen einphasenmodellen. Technical Report 654, Fortschritt-Berichte VDI (2000)

    Google Scholar 

  • Yagi, S., Kunii, D.: Studies on effective thermal conductivities in packed beds. AIChE J. 3, 373–381 (1957)

    Article  CAS  Google Scholar 

  • Yagi, S., Kunii, D.: Studies on heat transfer near wall surface in packed beds. AIChE J. 6, 97–104 (1960)

    Article  CAS  Google Scholar 

  • Zehner, P., Schlünder, E.U.: Wärmeleitfähigkeit von schüttungen bei mäßigen temperaturen. Chem. Ing. Tech. 42(14), 933–941 (1970)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimund Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Horn, R. (2019). Reaktoren für Fluid-Feststoff-Reaktionen: Festbettreaktoren. In: Reschetilowski, W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56444-8_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56444-8_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56444-8

  • Online ISBN: 978-3-662-56444-8

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics