Skip to main content

Experimental Techniques in Atomic and Molecular Physics

  • Chapter
  • First Online:
Atoms, Molecules and Photons

Part of the book series: Graduate Texts in Physics ((GTP))

  • 7650 Accesses

Abstract

The goals of all experimental investigations in atomic and molecular physics are: To gain information about the structure of atoms and molecules and their mutual interactions. To determine the bonding and ionization energies and to investigate electric and magnetic moments and their influence on the interaction energy To acquire more details about time dependent processes in atoms and molecules, i.e., about the molecular dynamics, which govern all atomic and molecular processes, such as chemical reactions and the interactions of photons with matter. They are the basis for all biological processes and therefore for life on earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.C. Melissonos, J. Napolitano, Experiments in Modern Physics, 2nd edn. (Academic Press, New York, 2003); B. Bederson, H. Walther (eds.), Advances in Atomic, Molecular and Optical Physics, vol 1–66 (Academic Press, New York)

    Google Scholar 

  2. E. Wolf (ed.), Progress in Optics, vol. 1–62 (North-Holland Publ., Amsterdam, 1961–2017)

    Google Scholar 

  3. E. Popov, E.G. Loewen, Diffraction Gratings and Applications (Dekker, New York, 1997)

    Google Scholar 

  4. M.D. Perry et al., High efficiency multilayer dielectric diffraction gratings. Opt. Lett. 20, 140 (1995)

    Google Scholar 

  5. W.H. Steel, Interferometry (Cambridge University Press, Cambridge, 1967)

    Google Scholar 

  6. D.F. Buscher, M. Longair: Practical Optical Interferometry (Cambridge University Press, 2015)

    Google Scholar 

  7. P. Hariharan, Optical Interferometry (Academic, New York, 2nd edn. 2003)

    Google Scholar 

  8. J.M. Vaughan, The Fabry-Perot Interferometer (Hilger, Bristol, 1989)

    Google Scholar 

  9. G.H. Rieke, Detection of Light (From the Ultraviolet to the Submillimeter (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  10. J.J. Keyes (ed.), Optical and Infrared Detection, 2nd edn. (Springer, Berlin, 1980)

    Google Scholar 

  11. J.D. Vincent, St. Hodges, Fundamentals of Infrared and Visible Detector Operation and Testing, 2nd edn. (Wiley Series in Pure and Applied Optics, Wiley 2015)

    Google Scholar 

  12. E.H. Putley, Thermal detectors, in [9], p. 71

    Google Scholar 

  13. M. Zen, Cryogenic bolometers, in Atomic and Molecular Beam Methods, vol. I ed. by G. Scales (Oxford University Press, Oxford, 1988)

    Google Scholar 

  14. See for instance the information sheets on photo-multipliens, issued by the manufacturers RCA, EMI, Hamamatsu, available on the web

    Google Scholar 

  15. A.L. ChH Townes, Schalow, Microwave Spectroscopy (Dover Publications, Mineola, 1975)

    Google Scholar 

  16. J.W. Fleming, J. Chamberlain, Infrared Phys. 14, 277 (1974)

    Article  ADS  Google Scholar 

  17. B.H. Stuart et al., Modern Infrared Spectroscopy (Wiley, Chichester, 1996); H. Günzler, H.V. Gremlich, IR-Spectroscopy: An Introduction (Wiley VCH, Weinheim, 2002)

    Google Scholar 

  18. P.R. Griffith, J.A. DeHaseth, Fourier Transform Infrared Spectroscopy, 2nd edn. (Wiley Interscience, New York, 1986); R.R. Williams, Spectroscopy and the Fourier Transform (Wiley, New York, 1995)

    Google Scholar 

  19. B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC-Press, Boca Raton); J. Kauppinen, J. Partanen, Fourier Transforms in Spectroscopy (Wiley, New York, 2001)

    Google Scholar 

  20. W. Demtröder, Laser Spectroscopy, 5th edn. (Springer, Berlin, Heidelberg 2015)

    Google Scholar 

  21. J.C. Lindon, G.E. Trautner, J.L. Holmes, Encyclopedia of Spectroscopy and Spectrometry, vol (I-III (Academic, London, 2000)

    Google Scholar 

  22. F. Träger (ed.), Springer Handbook of Lasers and Optics (Springer, Heidelberg, 2007)

    Google Scholar 

  23. J. Sneddon (ed.), Lasers in Analytical Atomic Spectroscopy (Wiley, New York, 1997)

    Google Scholar 

  24. A. Rosencwaig, Photoacoustic Spectroscopy (Wiley, New York, 1980)

    Book  Google Scholar 

  25. L.V. Wang, Photoacoustic Imaging and Spectroscopy, vol. 144 (CRC-Press, Optical Science and Engineering, 2009)

    Google Scholar 

  26. J. Xiu, R. Stroud, Acousto-Optic Devices, Principles, Design and Applications (Wiley, New York, 1992)

    Google Scholar 

  27. B. Barbieri, N. Beverini, A. Sasso, Optogalvanic spectroscopy. Rev. Mod. Phys. 62, 603 (1990)

    Article  ADS  Google Scholar 

  28. K. Narayanan, G. Ullas, S.B. Rai, A two step optical double resonance study of a FE-Ne-hollow cathode discharge using optogalvanic detection. Opt. Commun. 184, 102 (1991)

    Google Scholar 

  29. M.A. Zia, M.A. Baig, Laser optogalvanic spectroscopy of the even parity Rydberg states of atomic mercury. J. Opt. Soc. Am. B 22, 2702 (2005)

    Article  ADS  Google Scholar 

  30. V.N. Ochkin, N.G. Prebrazhensky, N.Y. Shaparev, The Optogalvanic Effect (Chem. Rub. Comp, Cleveland Ohio, 1999)

    Google Scholar 

  31. P. Zalicki, R.N. Zare, Cavity Ringdown spectroscopy for quantitative absorption measurements. J. Chem. Phys. 102, 2708 (1995)

    Article  ADS  Google Scholar 

  32. J.L. Hall. Defining and measuring optical frequencies. Nobel Lecture, 8 Dec. 2005, available at: http://nobelprize.org/physics/laureates/2005/hall-lecture.html

  33. D. Romanini, K.K. Lehmann, Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven and eight stretching quanta. J. Chem. Phys. 99, 6287 (1993)

    Article  ADS  Google Scholar 

  34. G. Berden, R. Engeln, Cavity Ringdown Spectroscopy: Techniques and Applications (Wiley-Blackwell 2009)

    Google Scholar 

  35. G. Höning, M. Cjajkowski, M. Stock, W. Demtröder, High resolution spectroscopy of \({\rm Cs}_2\). J. Chem. Phys. 71, 2138 (1979); M. Raab, H. Weickenmeier, W. Demtröder, The dissociation energy of the cesium dimer. Chem. Phys. Lett. 88, 377 (1982)

    Article  Google Scholar 

  36. G. Hurst, M.G. Payne, Principles and Applications of Resonance Ionisation Spectroscopy, ed. by D.S. Kliger (Academic, New York, 1983)

    Google Scholar 

  37. J.J. Kluge. K. Wendt, eds. Seventh International Symposium on Resonance Ionization Spectroscopy 1994. Vol. 329 (AIP Conference Proceedings, Am. Institute of Physics 2000)

    Google Scholar 

  38. J.B. Atkinson, J. Becker, W. Demtröder, Hyperfine structure of the 625 nm band in the \(a^{3}\Pi _{\mu }\leftarrow X\sum _{S}^{1}\) transition of \({\rm Na}_{2}\). Chem. Phys. Lett. 87, 128 (1982)

    Article  ADS  Google Scholar 

  39. B. Bobin, C.J. Bordé, C. Bréant, Vibration-rotation molecular constants for the ground state and \(\nu _{3}=1\) states of \({\rm SF}_{6}\) from saturated absorption spectroscopy. J. Mol. Spectrosc. 121, 91 (1987)

    Article  ADS  Google Scholar 

  40. A. Timmermann, High resolution two-photon spectroscopy of the \(6\, p^{2\,3}{\rm P}_{0}-7p^{3}{\rm P}_{0}\) transition in stable lead isotopes. Z. Phys. A 286, 93 (1980)

    Article  ADS  Google Scholar 

  41. G. Grynberg, B. Cagnac, Doppler-free multiphoton spectroscopy. Rep. Prog. Phys. 40, 791 (1977)

    Article  ADS  Google Scholar 

  42. H.W. Schrötter, H. Frunder, H. Berger, J.P. Boquitlon, B. Lavorel, G. Millet, High resolution CARS and inverse Raman spectroscopy, in Advanced Nonlinear Spectroscopy, vol. 3, p. 97 (Wiley, New York, 1987)

    Google Scholar 

  43. J.P. Taran: CARS-spectroscopy and applications, in Applied Laser Spectroscopy, ed. by W. Demtröder, M. Inguscio (Plenum Press, New York, 1990)

    Google Scholar 

  44. W. Zinth et al., Femtosecond spectroscopy and model calculations for an understanding of the primary reactions in bacterio-rhodopsin, in: Ultrafast Phenomena XII, ed. by T. Elsässer et al. (Springer, Berlin, 2000)

    Google Scholar 

  45. Ch. Kunz, Synchrotron Radiation. Techniques and Applications (Springer, Berlin, 1979); J.A.R. Samson, D.L. Lederer, Vacuum Ultraviolet Spectroscopy (Academic, New York, 2000)

    Google Scholar 

  46. Kwang-Je Kim, Zhirong Huang: Synhrotron Radiation and Free Electron Lasers (Cambridge University Press 2017)

    Google Scholar 

  47. G. Brown et al., Wiggler and Undulator Magnets: A Review. Nucl Instrum Methods 208, 65–77 (1983)

    Article  ADS  Google Scholar 

  48. P. Schlemmer, M.K. Srivastava, T. Rösel, H. Ehrhardt, Electron impact ionization of helium at intermediate collision energies. J. Phys. B 24, 2719 (1991)

    Article  ADS  Google Scholar 

  49. N.H. March, J.F. Mucci, Chemical Physics of Free Molecules (Plenum Press, New York, 1992)

    Google Scholar 

  50. H. Hotop, M.W. Ruf, M. Allan, I.I. Fabrikant, Resonance and Treshold Phenomena in Low-Energy Electron Collisions with Molecules and Clusters. Adv. At. Mol. Opt. Phys. 49, 85 (2003)

    Article  ADS  Google Scholar 

  51. E.W. Schlag, ZEKE-Spectroscopy (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  52. R. Signorell, F. Merkt, H. Palm, Structure of the ammonium radical from a rotationally resolved photoelectron spectrum. J. Chem. Phys. 106, 6523 (1997)

    Article  ADS  Google Scholar 

  53. See for instance: N.F. Ramsey, Molecular Beams, 2nd edn (Clarendon Press, Oxford, 1989)

    Google Scholar 

  54. K. Bergmann, State selection via optical methods, in Atomic and Molecular Beam Methods, vol. 1, ed. by G. Scoles (Oxford University Press, Oxford, 1988)

    Google Scholar 

  55. J.C. Zorn, T.C. English, Molecular beam electric resonance spectroscopy. Adv. Atom. Mol. Phys. 9, 243 (1973)

    Article  ADS  Google Scholar 

  56. K. Uehara, T. Shimizu, K. Shimoda, High resolution Stark spectroscopy of molecules by infrared and farinfrared masers. IEEE J. Quantum Electron. 4, 728 (1968)

    Article  ADS  Google Scholar 

  57. Proceedings of International Conference on the Physics of Electronic and Atomic Collisions ICPEAC I-XXVI (North Holland Publ., Amsterdam, 1959–2010)

    Google Scholar 

  58. see for instance: HMI-information in English on the web, www.hmi.de/bereiche/info/dualismus/kernregenbogen_en.html

  59. K. Bergmann, State selection via optical method, in Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford University Press, Oxford, 1989)

    Google Scholar 

  60. K. Bergmann, U. Hefter, J. Witt, State-to-state differential cross sections for rotational transitions in \({\rm Na}_{2}+\) He collisions. J. Chem. Phys. 71, 2726 (1979)

    Article  ADS  Google Scholar 

  61. M.A.D. Fluendy, K.P. Lawley, Chemical Applications of Molecular Beam Scattering (Chapman & Hall, London, 1973)

    Google Scholar 

  62. F. Leomon et al., Crossed-beam universal detection reactive scattering of radical beams. Mol. Phys. 108, 1097 (2010)

    Article  ADS  Google Scholar 

  63. P.V. O’Connor, P. Phillips, Time Correlated Single Photon Counting (Academic, New York, 1984)

    Google Scholar 

  64. W. Becker: Advanced Time-correlated Single Photon Count Applications (Springer Series in Chemical Physics 111, Springer 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Demtröder .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Demtröder, W. (2018). Experimental Techniques in Atomic and Molecular Physics. In: Atoms, Molecules and Photons. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55523-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55523-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55521-7

  • Online ISBN: 978-3-662-55523-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics