Skip to main content

Lernen mit Bewegtbildern: Videos und Animationen

  • Living reference work entry
  • First Online:
Book cover Lernen mit Bildungstechnologien

Part of the book series: Springer Reference Psychologie ((SRP))

  • 2183 Accesses

Zusammenfassung

Der vorliegende Beitrag beschäftigt sich nach einer kritischen Würdigung der grundsätzlichen Eignung von Bewegtbildern für den Wissenserwerb mit deren sinnvollem Einsatz in Lernsituationen. Ausgehend von kognitionspsychologischen und pädagogisch-psychologischen Forschungsergebnissen werden Strategien vorgestellt, wie Videos und Animationen durch Produktionstechniken (z. B. Kameraperspektive, Schnitte), Charakteristika der Darbietungssituation (z. B. Pausen) oder Methoden der Aufmerksamkeitslenkung (Cueing) für den Wissenserwerb optimiert werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Berney, S., & Bétrancourt, M. (2016). Does animation enhance learning? A meta-analysis. Computers & Education, 101, 150–167.

    Article  Google Scholar 

  • Bétrancourt, M., & Tversky, B. (2000). Effect of computer animation on users’ performance: A review. Le Travail Humain, 63, 311–329.

    Google Scholar 

  • Cheon, J., Chung, S., Crooks, S. M., Song, J., & Kim, J. (2014). An investigation of the effects of different types of activities during pauses in a segmented instructional animation. Journal of Educational Technology & Society, 17, 296–306.

    Google Scholar 

  • Eitel, A., & Scheiter, K. (2015). Picture or text first? Explaining sequence effects when learning with pictures and text. Educational Psychology Review, 27, 153–180.

    Article  Google Scholar 

  • Feierabend, S., & Klinger, W. (2003). Lehrer/-Innen und Medien 2003. Baden-Baden: Medienpädagogischer Forschungsverbund Südwest.

    Google Scholar 

  • Fiorella, L., van Gog, T., Hoogerheide, V., & Mayer, R. E. (2017). It’s all a matter of perspective: Viewing first-person video modeling examples promotes learning of an assembly task. Journal of Educational Psychology, 109(5), 653–665.

    Article  Google Scholar 

  • Fischer, S., Lowe, R. K., & Schwan, S. (2008). Effects of presentation speed of a dynamic visualization on the understanding of a mechanical system. Applied Cognitive Psychology, 22, 1126–1141.

    Article  Google Scholar 

  • Furnham, A., & Gunter, B. (1987). Effects of time of day and medium of presentation on immediate recall of violent and non-violent news. Applied Cognitive Psychology, 1, 255–262.

    Article  Google Scholar 

  • Garsoffky, B., Huff, M., & Schwan, S. (2007). Changing viewpoints during dynamic events. Perception, 36(3), 366–374.

    Article  Google Scholar 

  • Garsoffky, B., Schwan, S., & Huff, M. (2009). Canonical views of dynamic scenes. Journal of Experimental Psychology: Human Perception and Performance, 35, 17–27.

    PubMed  Google Scholar 

  • Glaser, M., & Schwan, S. (2015). Explaining pictures: How verbal cues influence processing of pictorial learning material. Journal of Educational Psychology, 107, 1006–1018.

    Article  Google Scholar 

  • Glaser, M., Lengyel, D., Toulouse, C., & Schwan, S. (2017). Designing computer-based learning contents: Influence of digital zoom on attention. Educational Technology Research and Development, 65(5), 1135–1151.

    Article  Google Scholar 

  • Gunter, B., Furnham, A., & Leese, J. (1986). Memory for information from a party political broadcast as a function of the channel of communication. Social Behaviour, 1, 135–142.

    Google Scholar 

  • Harp, S. F., & Mayer, R. E. (1998). How seductive details do their damage: A theory of cognitive interest in science learning. Journal of Educational Psychology, 90, 414–434.

    Article  Google Scholar 

  • Hasler, B. S., Kersten, B., & Sweller, J. (2007). Learner control, cognitive load and instructional animation. Applied Cognitive Psychology, 21, 713–729.

    Article  Google Scholar 

  • Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17, 722–738.

    Article  Google Scholar 

  • Institut für Demoskopie Allensbach. (2013). Digitale Medien im Unterricht – Möglichkeiten und Grenzen. http://www.ifd-allensbach.de/uploads/tx_studies/Digitale_Medien_2013.pdf. Zugegriffen am 13.04.2017.

  • Jarodzka, H., Balslev, T., Holmqvist, K., Nyström, M., Scheiter, K., Gerjets, P., & Eika, B. (2012). Conveying clinical reasoning based on visual observation via eye-movement modelling examples. Instructional Science, 40, 813–827.

    Article  Google Scholar 

  • Khacharem, A., Spanjers, I. E., Zoudji, B., Kalyuga, S., & Ripoll, H. (2013). Using segmentation to support the learning from animated soccer scenes: An effect of prior knowledge. Psychology of Sport and Exercise, 14, 154–160.

    Article  Google Scholar 

  • Koning, B. B. de, Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21, 113–140.

    Article  Google Scholar 

  • Levie, W. H., & Lentz, R. (1982). Effects of text illustrations: A review of research. Educational Communication & Technology Journal, 30, 195–232.

    Google Scholar 

  • Lowe, R. K., & Boucheix, J.-M. (2008). Learning from animated diagrams: How are mental models built? In G. Stapleton, J. Howse & J. Lee (Hrsg.), Diagrammatic representation and inference (S. 266–281). Berlin: Springer.

    Chapter  Google Scholar 

  • Lusk, D. L., Evans, A. D., Jeffrey, T. R., Palmer, K. R., Wikstrom, C. S., & Doolittle, P. E. (2009). Multimedia learning and individual differences: Mediating the effects of working memory capacity with segmentation. British Journal of Educational Technology, 40, 636–651.

    Article  Google Scholar 

  • Mayer, R. E., & Pilegard, C. (2014). Principles for managing essential processing in multimedia learning: Segmenting, pre-training, and modality principles. In R. E. Mayer (Hrsg.), The Cambridge Handbook of multimedia learning (S. 316–344). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Meij, H. van der, & van der Meij, J. (2013) Eight guidelines for the design of instructional videos for software training. Technical Communication, 60, 205–228.

    Google Scholar 

  • Merkt, M., & Schwan, S. (2014). Training the use of interactive videos: Effects on mastering different tasks. Instructional Science, 42, 421–441.

    Article  Google Scholar 

  • Merkt, M., & Schwan, S. (2016). Lernen mit digitalen Videos: Der Einfluss einfacher interaktiver Kontrollmöglichkeiten. Psychologische Rundschau, 67, 94–101.

    Article  Google Scholar 

  • Merkt, M., & Sochatzy, F. (2015). Becoming aware of cinematic techniques in propaganda: Instructional support by cueing and training. Learning and Instruction, 39, 55–71.

    Article  Google Scholar 

  • Merkt, M., Weigand, S., Heier, A., & Schwan, S. (2011). Learning with videos vs. learning with print: The role of interactive features. Learning and Instruction, 21, 687–704.

    Google Scholar 

  • Merkt, M., Werner, M., & Wagner, W. (2017). Historical thinking skills and mastery of multiple document tasks. Learning and Individual Differences, 54, 135–148.

    Article  Google Scholar 

  • Moreno, R. (2007). Optimising learning from animations by minimising cognitive load: Cognitive and affective consequences of signalling and segmentation methods. Applied Cognitive Psychology, 21, 765–781.

    Article  Google Scholar 

  • Orgeron, D., Orgeron, M., & Streible, D. (2012). Learning with the lights off. Educational film in the United States. Oxford: Oxford Univeristy Press.

    Google Scholar 

  • Pettijohn, K. A., Thompson, A. N., Tamplin, A. K., Krawietz, S. A., & Radvansky, G. A. (2016). Event boundaries and memory improvement. Cognition, 148, 136–144.

    Article  Google Scholar 

  • Ploetzner, R., & Lowe, R. (2012). A systematic characterization of expository animations. Computers in Human Behavior, 28, 781–794.

    Article  Google Scholar 

  • Rey, G. D. (2012). A review of research and a meta-analysis of the seductive detail effect. Educational Research Review, 7, 216–237.

    Article  Google Scholar 

  • Salomon, G. (1984). Television is „easy“ and print is „tough“: The differential investment of mental effort in learning as a function of perceptions and attribution. Journal of Educational Psychology, 76, 647–658.

    Article  Google Scholar 

  • Scheiter, K., Gerjets, P., Huk, T., Imhof, B., & Kammerer, Y. (2009). The effects of realism in learning with dynamic visualizations. Learning and Instruction, 19, 481–494.

    Article  Google Scholar 

  • Schnotz, W., & Lowe, R. K. (Hrsg.). (2008). A unified view of learning from animated and static graphics. In Learning with animation (S. 304–356). New York: Cambridge University Press.

    Google Scholar 

  • Schwan, S., & Garsoffky, B. (2004). The cognitive representation of filmic event summaries. Applied Cognitive Psychology, 18, 3–55.

    Article  Google Scholar 

  • Schwan, S., & Papenmeier, F. (2017). Learning from Animations: From 2D to 3D? In R. Plötzner & R. Lowe (Hrsg.), Learning from dynamic visualizations: Innovations in research and application (S. 31–49). Berlin: Springer.

    Chapter  Google Scholar 

  • Schwan, S., & Riempp, R. (2004). The cognitive benefits of interactive videos: Learning to tie nautical knots. Learning and Instruction, 14, 293–305.

    Article  Google Scholar 

  • Spanjers, I. E., van Gog, T., & van Merriënboer, J. G. (2010). A theoretical analysis of how segmentation of dynamic visualizations optimizes students’ learning. Educational Psychology Review, 22, 411–423.

    Article  Google Scholar 

  • Spanjers, I. E., Wouters, P., van Gog, T., & van Merriënboer, J. G. (2011). An expertise reversal effect of segmentation in learning from animated worked-out examples. Computers in Human Behavior, 27, 46–52.

    Article  Google Scholar 

  • Spanjers, I. E., van Gog, T., Wouters, P., & van Merriënboer, J. G. (2012). Explaining the segmentation effect in learning from animations: The role of pausing and temporal cueing. Computers & Education, 59, 274–280.

    Article  Google Scholar 

  • Tatler, B. W., & Melcher, D. (2007). Pictures in mind: Initial encoding of object properties varies with the realism of the scene stimulus. Perception, 36, 1715–1729.

    Article  Google Scholar 

  • Tversky, B., Morrison, J. B., & Bétrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57, 247–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Merkt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Merkt, M., Schwan, S. (2018). Lernen mit Bewegtbildern: Videos und Animationen. In: Niegemann, H., Weinberger, A. (eds) Lernen mit Bildungstechnologien. Springer Reference Psychologie . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54373-3_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54373-3_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54373-3

  • Online ISBN: 978-3-662-54373-3

  • eBook Packages: Springer Referenz Psychologie

Publish with us

Policies and ethics