Skip to main content

Orientierung in Zeit und Raum

  • Chapter
  • First Online:
Verhaltensbiologie
  • 10k Accesses

Zusammenfassung

Das tagtägliche Überleben von Tieren basiert zu einem wichtigen Teil auf ihrer Fähigkeit, sich mit Hilfe des Verhaltens an wechselnde soziale und ökologische Bedingungen anzupassen. Diese Verhaltenskapazitäten ergänzen relevante physiologische und anatomische Anpassungen und sind funktional eng mit diesen verbunden. Im Unterschied zu Pflanzen haben die meisten Tiere die Möglichkeit, sich zumindest in einem Lebensstadium (z.B. als Larve) aktiv in Relation zu fitnessrelevanten Faktoren wie Nahrung, Räubern oder Paarungspartnern zu bewegen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Able KP (1996) The debate over olfactory navigation by homing pigeons. J Exp Biol 199:121−124

    Google Scholar 

  • Able KP, Able MA (1996) The flexible migratory orientation system of the savannah sparrow (Passerculus sandwichensis). J Exp Biol 199:3−8

    Google Scholar 

  • Acosta-Avalos D, Esquivel DMS, Wajnberg E, Lins de Barros HGP, Oliveira PS, Leal I (2001) Seasonal patterns in the orientation system of the migratory ant Pachycondyla marginata. Naturwissenschaften 88:343−346

    Google Scholar 

  • Åkesson S, Wehner R (2002) Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference? J Exp Biol 205:1971−1978

    Google Scholar 

  • Albrecht U (2002) Invited review: regulation of mammalian circadian clock genes. J Appl Physiol 92:1348−1355

    Google Scholar 

  • Alerstam T (2006) Conflicting evidence about long-distance animal navigation. Science 313:791−794

    Google Scholar 

  • Alerstam T, Gudmundsson GA, Green M, Hedenström A (2001) Migration along orthodromic sun compass routes by Arctic birds. Science 291:300−303

    Google Scholar 

  • Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247−260

    Google Scholar 

  • André M, Kamminga C (2000) Rhythmic dimension in the echolocation click trains of sperm whales: a possible function of identification and communication. J Mar Biol Ass UK 80:163−169

    Google Scholar 

  • Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25:11−28

    Google Scholar 

  • Au WWL, Benoit-Bird KJ (2003) Automatic gain control in the echolocation system of dolphins. Nature 423:861−863

    Google Scholar 

  • Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften 89:1−10

    Google Scholar 

  • Bardunias PM, Jander R (2000) Three dimensional path integration in the house mouse (Mus domestica). Naturwissenschaften 87:532−534

    Google Scholar 

  • Bearhop S, Fiedler W, Furness RW, Votier SC, Waldron S, Newton J, Bowen GJ, Berthold P, Farnsworth K (2005) Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310:502−504

    Google Scholar 

  • Bennett ATD (1996) Do animals have cognitive maps? J Exp Biol 199:219−224

    Google Scholar 

  • Berthold P (1991) Genetic control of migratory behaviour in birds. Trends Ecol Evol 6:254−257

    Google Scholar 

  • Berthold P, Helbig AJ, Mohr G, Querner U (1992) Rapid microevolution of migratory behaviour in a wild bird species. Nature 360:668−670

    Google Scholar 

  • Bisch-Knaden S, Wehner R (2003) Landmark memories are more robust when acquired at the nest site than en route: experiments in desert ants. Naturwissenschaften 90:127−130

    Google Scholar 

  • Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60−63

    Google Scholar 

  • Bratton BO, Kramer B (1989) Patterns of the electric organ discharge during courtship and spawning in the mormyrid fish, Pollimyrus isidori. Behav Ecol Sociobiol 24:349−368

    Google Scholar 

  • Burt T, Holland R, Guilford T (1997) Further evidence for visual landmark involvement in the pigeon’s familiar area map. Anim Behav 53:1203−1209

    Google Scholar 

  • Burt de Perera T (2004) Fish can encode order in their spatial map. Proc R Soc Lond B 271:2131−2134

    Google Scholar 

  • Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537−540

    Google Scholar 

  • Chittka L, Williams NM, Rasmussen H, Thomson JD (1999) Navigation without vision: bumblebee orientation in complete darkness. Proc R Soc Lond B 266:45−50

    Google Scholar 

  • Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405−408

    Google Scholar 

  • Collett M, Collett TS (2000a) How do insects use path integration for their navigation? Biol Cybern 83:245−259

    Google Scholar 

  • Collett TS, Collett M (2000b) Path integration in insects. Curr Opin Neurobiol 10:757−762

    Google Scholar 

  • Collin SP, Whitehead D (2004) The functional roles of passive electroreception in non-electric fishes. Anim Biol 54:1−25

    Google Scholar 

  • Dacke M, Nilsson D-E, Scholtz CH, Byrne M, Warrant EJ (2003) Insect orientation to polarized moonlight: an African dung beetle uses the moonlit sky to make a swift exit after finding food. Nature 424:33

    Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckman H (2001) Hydrodynamic trailfollowing in harbor seals (Phoca vitulina). Science 293:102−104

    Google Scholar 

  • Deutschlander ME, Freake MJ, Borland SC, Phillips JB, Madden RC, Anderson LE, Wilson BW (2003) Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim Behav 65:779−786

    Google Scholar 

  • Di Bitetti MS, Janson CH (2000) When will the stork arrive? Patterns of birth seasonality in neotropical primates. Am J Primatol 50:109−130

    Google Scholar 

  • Dornhaus A, Chittka L (1999) Insect behaviour: evolutionary origins of bee dances. Nature 401:38

    Google Scholar 

  • Durou S, Lauga J, Dejan A (2001) Intensive food searching in humid patches: adaptation of a myrmicine ant to environmental constraints. Behaviour 138:251−259

    Google Scholar 

  • Dyer FC, Dickinson JA (1996) Sun-compass learning in insects: representation in a simple mind. Curr Direct Psychol Sci 5:67−72

    Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol A 188:513−526

    Google Scholar 

  • Erkert HG (2002) Aktivitätsperiodik der Chiroptera. In: Fischer MS, Niethammer J, Schliemann H, Starck D (eds) Handbuch der Zoologie. Band VIII: Mammalia. Teilband 61: Chiroptera. Walter de Gruyter, Berlin New York, pp 83−129

    Google Scholar 

  • Erkert HG, Kappeler PM (2004) Arrived in the light: diel and seasonal activity patterns in wild Verreaux’s sifakas (Propithecus v. verreauxi; Primates: Indriidae). Behav Ecol Sociobiol 57:174−186

    Google Scholar 

  • Esch HE, Zhang S, Srinivasan MV, Tautz J (2001) Honeybee dances communicate distances measured by optic flow. Nature 411:581−583

    Google Scholar 

  • Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149:1−10

    Google Scholar 

  • Fernald RD (2000) Evolution of eyes. Curr Opin Neurobiol 10:444−450

    Google Scholar 

  • Flamarique IN, Browman HI (2001) Foraging and prey-search behaviour of small juvenile rainbow trout (Oncorhynchus mykiss) under polarized light. J Exp Biol 204:2415−2422

    Google Scholar 

  • Freire R, Munro UH, Rogers LJ, Wiltschko R, Wiltschko W (2005) Chickens orient using a magnetic compass. Curr Biol 15:R620−R621

    Google Scholar 

  • Fry SN, Wehner R (2002) Honey bees store landmarks in an egocentric frame of reference. J Comp Physiol A 187:1009−1016

    Google Scholar 

  • Gilbert F, Elsner N (2000) Directional hearing of a grasshopper in the field. J Exp Biol 203:983−993

    Google Scholar 

  • Gill RE Jr, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc Lond B 276:447−457

    Google Scholar 

  • Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39−48

    Google Scholar 

  • Gwinner E, Brandstätter R (2001) Complex bird clocks. Philos Trans R Soc Lond B 356:1801−1810

    Google Scholar 

  • Hagstrum JT (2000) Infrasound and the avian navigational map. J Exp Biol 203:1103−1111

    Google Scholar 

  • Halle S, Stenseth NC (1994) Microtine ultradian rhythm of activity: an evaluation of different hypotheses on the triggering mechanism. Mammal Rev 24:17−39

    Google Scholar 

  • Harley HE, Putman EA, Roitblat HL (2003) Bottlenose dolphins perceive object features through echolocation. Nature 424:667−669

    Google Scholar 

  • Hau M (2001) Timing of breeding in variable environments: tropical birds as model systems. Horm Behav 40:281−290

    Google Scholar 

  • Hawkes LA, Balachandran S, Batbayar N, Butler PJ, Frappell PB, Milsom WK, Tseveenmyadag N, Newman SH, Scott GR, Sathiyaselvam P, Takekawa JY, Wikelski M, Bishop CM (2011) The trans-Himalayan flights of bar-headed geese (Anser indicus). Proc Natl Acad Sci USA 108:9516−9519

    Google Scholar 

  • Hedenström A (2010) Extreme endurance migration: what is the limit to non-stop flight? PLoS Biol 8:e1000362, doi:10.1371/journal.pbio.1000362

  • Heldmaier G, Neuweiler G (2003) Vergleichende Tierphysiologie. Band 1. Springer, Heidelberg

    Google Scholar 

  • Helfrich-Förster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567−594

    Google Scholar 

  • Hofman MA (2004) The brain’s calendar: neural mechanisms of seasonal timing. Biol Rev Camb Philos Soc 79:61−77

    Google Scholar 

  • Holland RA (2003) The role of visual landmarks in the avian familiar area map. J Exp Biol 206:1773−1778

    Google Scholar 

  • Holland RA (2007) Orientation and navigation in bats: known unknowns or unknown unknows? Behav Ecol Sociobiol 61:653−660

    Google Scholar 

  • Holland RA, Wikelski M, Wilcove DS (2006) How and why do insects migrate? Science 313:794−796

    Google Scholar 

  • Holland RA, Borissov I, Siemers BM (2010) A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. Proc Natl Acad Sci USA 107:6941−6945

    Google Scholar 

  • Humston R, Ault JS, Lutcavage M, Olson DB (2000) Schooling and migration of large pelagic fishes relative to environmental cues. Fish Oceanogr 9:136−146

    Google Scholar 

  • Janson CH (2007) Experimental evidence for route integration and strategic planning in wild capuchin monkeys. Anim Cogn 10:341−356

    Google Scholar 

  • Jetz W, Steffen J, Linsenmair KE (2003) Effects of light and prey availability on nocturnal, lunar and seasonal activity of tropical nightjars. Oikos 103:627−639

    Google Scholar 

  • Jones G, Holderied MW (2007) Bat echolocation calls: adaptation and convergent evolution. Proc R Soc Lond B 274:905−912

    Google Scholar 

  • Kamil AC, Cheng K (2001) Way-finding and landmarks: the multiple-bearings hypothesis. J Exp Biol 204:103−113

    Google Scholar 

  • Kappeler PM, Erkert HG (2003) On the move around the clock: correlates and determinants of cathemeral activity in wild redfronted lemurs (Eulemur fulvus rufus). Behav Ecol Sociobiol 54:359−369

    Google Scholar 

  • Keller TA, Powell I, Weissburg MJ (2003) Role of olfactory appendages in chemically mediated orientation of blue crabs. Mar Ecol Progr Ser 261:217−231

    Google Scholar 

  • Kiltie RA (2000) Scaling of visual acuity with body size in mammals and birds. Funct Ecol 14:226−234

    Google Scholar 

  • Kimchi T, Etienne AS, Terkel J (2004) A subterranean mammal uses the magnetic compass for path integration. Proc Natl Acad Sci USA 101:1105−1109

    Google Scholar 

  • Körtner G, Geiser F (2000) Torpor and activity patterns in free-ranging sugar gliders Petaurus breviceps (Marsupialia). Oecologia 123:350−357

    Google Scholar 

  • Kristensen EA, Closs GP (2004) Anti-predator response of naive and experienced common bully to chemical alarm cues. J Fish Biol 64:643−652

    Google Scholar 

  • Kullberg C, Lind J, Fransson T, Jakobsson S, Vallin A (2003) Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc R Soc Lond B 270:373−378

    Google Scholar 

  • Landys MM, Piersma T, Guglielmo CG, Jukema J, Ramenofsky M, Wingfield JC (2005) Metabolic profile of long-distance migratory flight and stopover in a shorebird. Proc R Soc Lond B 272:295−302

    Google Scholar 

  • Layne JE, Barnes WJP, Duncan LMJ (2003) Mechanisms of homing in the fiddler crab Uca rapax. 2. Information sources and frame of reference for a path integration system. J Exp Biol 206:4425−4442

    Google Scholar 

  • Levine JD, Funes P, Dowse HB, Hall JC (2002) Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298:2010−2012

    Google Scholar 

  • Lohmann KJ (2010) Magnetic-field perception. Nature 464:1140−1142

    Google Scholar 

  • Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. Nature 428:909

    Google Scholar 

  • Marhold S, Wiltschko W, Burda H (1997) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84:421−423

    Google Scholar 

  • Menzel R, Brandt R, Gumbert A, Komischke B, Kunze J (2000) Two spatial memories for honeybee navigation. Proc R Soc Lond B 267:961−968

    Google Scholar 

  • Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hülse S, Plümpe T, Schaupp F, Schüttler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci USA 102:3040−3045

    Google Scholar 

  • Møller AP (2001) Heritability of arrival date in a migratory bird. Proc R Soc Lond B 268:203−206

    Google Scholar 

  • Mondor EB, Roitberg BD (2003) Age-dependent fitness costs of alarm signaling in aphids. Can J Zool 81:757−762

    Google Scholar 

  • Morgan SG, Anastasia JR (2008) Behavioral tradeoff in estuarine larvae favors seaward migration over minimizing visibility to predators. Proc Natl Acad Sci USA 105:222−227

    Google Scholar 

  • Mouritsen H, Larsen ON (1998) Migrating young pied flycatchers Ficedula hypoleuca do not compensate for geographical displacements. J Exp Biol 201:2927−2934

    Google Scholar 

  • Mouritsen H, Larsen ON (2001) Migrating songbirds tested in computercontrolled Emlen funnels use stellar cues for a time-independent compass. J Exp Biol 204:3855−3865

    Google Scholar 

  • Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287−5290

    Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615−641

    Google Scholar 

  • Oster H, Maronde E, Albrecht U (2002) The circadian clock as a molecular calendar. Chronobiol Int 19:507−516

    Google Scholar 

  • Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311−314

    Google Scholar 

  • Pahl M, Tautz J, Zhang S (2010) Honeybee cognition. In: Kappeler PM (ed) Animal Behaviour: Evolution and Mechanisms. Springer, Heidelberg, pp 87−120

    Google Scholar 

  • Palmer JD (2000) The clocks controlling the tide-associated rhythms of intertidal animals. BioEssays 22:32−37

    Google Scholar 

  • Perdeck AC (1958) Two types of orientation in migrating Sturnus vulgaris and Fringilla coelebs as revealed by displacement experiments. Ardea 46:1−37

    Google Scholar 

  • Pereira ME, Strohecker RA, Cavigelli SA, Hughes CL, Pearson DD (1999) Metabolic strategy and social behavior in Lemuridae. In: Rasamimanana H, Rakotosamimanana B, Ganzhorn JU, Goodman SM (eds) New Directions in Lemur Studies. Plenum, New York, pp 93−118

    Google Scholar 

  • Pulido F, Berthold P, Mohr G, Querner U (2001) Heritability of the timing of autumn migration in a natural bird population. Proc R Soc Lond B 268:953−959

    Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935−941

    Google Scholar 

  • Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R (2005) The flight path of honeybees recruited by the waggle dance. Nature 435:205−207

    Google Scholar 

  • Rinkwitz S, Bober E, Baker R (2001) Development of the vertebrate inner ear. Annu NY Acad Sci 942:1−14

    Google Scholar 

  • Rohrseitz K, Tautz J (1999) Honey bee dance communication: waggle run direction coded in antennal contacts? J Comp Physiol A 184:463−470

    Google Scholar 

  • Rosenberg J, Burt PJA (1999) Windborne displacements of desert locusts from Africa to the Caribbean and South America. Aerobiologica 15:167−175

    Google Scholar 

  • Rundus AS, Owings DH, Joshi SS, Chinn E, Giannini N (2007) Ground squirrels use an infrared signal to deter rattlesnake predation. Proc Natl Acad Sci USA 104:14372−14376

    Google Scholar 

  • Saigusa M, Kawagoye O (1997) Circatidal rhythm of an intertidal crab, Hemigrapsus sanguineus: synchrony with unequal tide height and involvement of a light-response mechanism. Marine Biol 129:87−96

    Google Scholar 

  • Sakai T, Ishida N (2001) Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc Natl Acad Sci USA 98:9221−9225

    Google Scholar 

  • Schmidt-Koenig K (1960) The sun azimuth compass: one factor in the orientation of homing pigeons. Science 131:826−827

    Google Scholar 

  • Schultz TF, Kay SA (2003) Circadian clocks in daily and seasonal control of development. Science 301:326−328

    Google Scholar 

  • Seyfarth EA, Hergenröther R, Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11:139−148

    Google Scholar 

  • Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK (2002) Locomotor activity rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften 89:512−514

    Google Scholar 

  • Shi Y, Radlwimmer FB, Yokoyama S (2001) Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 98:11731−11736

    Google Scholar 

  • Shine R, Sun L-X (2003) Attack strategy of an ambush predator: which attributes of the prey trigger a pit-viper’s strike? Funct Ecol 17:340−348

    Google Scholar 

  • Siemers BM, Schnitzler H-U (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657−661

    Google Scholar 

  • Srinivasan M, Zhang S, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the ‘odometer’. Science 287:851−853

    Google Scholar 

  • Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862−868

    Google Scholar 

  • Sukhedo MVK, Sukhedo SC (2004) Trematode behaviours and the perceptual worlds of parasites. Can J Zool 82:292−315

    Google Scholar 

  • Surlykke A, Kalko EKV (2008) Echolocating bats cry out loud to detect their prey. PLoS ONE 3:e2036

    Google Scholar 

  • Tauber E, Zordan M, Sandrelli F, Pegoraro M, Osterwalder N, Breda C, Daga A, Selmin A, Monger K, Benna C, Rosato E, Kyriacou CP, Costa R (2007) Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316:1895−1898

    Google Scholar 

  • Tautz J (2007) Phänomen Honigbiene. Spektrum, Heidelberg

    Google Scholar 

  • Tautz J, Rohrseitz K (1998) What attracts honeybees to a waggle dancer? J Comp Physiol A 183:661−667

    Google Scholar 

  • Tautz J, Sandeman DC (2003) Recruitment of honeybees to non-scented food sources. J Comp Physiol A 189:293−300

    Google Scholar 

  • Tautz J, Zhang S, Spaethe J, Brockmann A, Si A, Srinivasan M (2004) Honeybee odometry: performance in varying natural terrain. PLoS Biol 2:e211, doi:10.1371/journal.pbio.0020211

  • Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403:188−192

    Google Scholar 

  • Tomioka K, Abdelsalam S (2004) Circadian organization in hemimetabolous insects. Zool Sci 21:1153−1162

    Google Scholar 

  • Topping MG, Millar JS, Goddard JA (1999) The effects of moonlight on nocturnal activity in bushy-tailed wood rats (Neotoma cinerea). Can J Zool 77:480−485

    Google Scholar 

  • Ugolini A, Fantini T, Innocenti R (2003) Orientation at night: an innate moon compass in sandhoppers (Amphipoda: Talitridae). Proc R Soc Lond B 270:279−281

    Google Scholar 

  • van Nouhuys S, Kaartinen R (2008) A parasitoid wasp uses landmarks while monitoring potential resources. Proc R Soc Lond B 275:377−385

    Google Scholar 

  • van Oort BEH, Tyler NJC, Gerkema MP, Folkow L, Blix AS, Stokkan KA (2005) Circadian organization in reindeer. Nature 438:1095−1096

    Google Scholar 

  • Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198:203−212

    Google Scholar 

  • von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890−894

    Google Scholar 

  • von Frisch K (1967) The Dance Language and Orientation of Bees. Belknap Press of Harvard Univ Press, Cambridge/MA

    Google Scholar 

  • Warrant EJ, Kelber A, Gislen A, Greiner B, Ribi W, Wcislo WT (2004) Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol 14:1309−1318

    Google Scholar 

  • Wehner R (1989) Neurobiology of polarization vision. Trends Neurosci 12:353−359

    Google Scholar 

  • Wehner R (1997) Sensory systems and behaviour. In: Krebs JR, Davies NB (eds) Behavioural Ecology. Blackwell, Oxford, pp 19−41

    Google Scholar 

  • Wehner R (2001) Polarization vision – a uniform sensory capacity? J Exp Biol 204:2589−2596

    Google Scholar 

  • Weissburg MJ, Doall MH, Yen J (1998) Following the invisible trail: kinematic analysis of mate-tracking in the copepod Temora longicornis. Philos Trans R Soc Lond B 353:701−712

    Google Scholar 

  • Welch JM, Forward RB (2001) Flood title transport of blue crab, Callinectes sapidus, postlarvae: behavioral responses to salinity and turbulence. Marine Biol 139:911−918

    Google Scholar 

  • Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704

    Google Scholar 

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62−64

    Google Scholar 

  • Wiltschko W, Balda RP, Jahnel M, Wiltschko R (1999) Sun compass orientation in seed-caching corvids: its role in spatial memory. Anim Cogn 2:215−221

    Google Scholar 

  • Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467−470

    Google Scholar 

  • Winne CT, Keck MB (2004) Daily activity patterns of whiptail lizards (Squamata: Teiidae: Aspidoscelis): a proximate response to environmental conditions or an endogenous rhythm? Funct Ecol 18:314−321

    Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965−1967

    Google Scholar 

  • Wohlgemuth S, Ronacher B, Wehner R (2001) Ant odometry in the third dimension. Nature 411:795−798

    Google Scholar 

  • Wyatt TD (2003) Pheromones and Animal Behaviour. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Yamahira K (2004) How do multiple environmental cycles in combination determine reproductive timing in marine organisms? A model and test. Funct Ecol 18:4−15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kappeler .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kappeler, P. (2017). Orientierung in Zeit und Raum. In: Verhaltensbiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53145-7_4

Download citation

Publish with us

Policies and ethics