Skip to main content

Druckabfall von Gas-Flüssigkeitsströmungen in Rohren, Leitungselementen und Armaturen

  • Living reference work entry
  • First Online:
VDI-Wärmeatlas

Part of the book series: Springer Reference Technik ((VDISR))

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Hewitt, G.F., Roberts, D.N.: Studies of Two Phase Flow Patterns by Simultaneous X-ray and Flash Photography AERE-M, Bd. 2159. Oxfordshire AERE, Harwell (1969)

    Google Scholar 

  2. Taitel, Y., Dukler, A.E.: A model for predicting flow regime transitions in horizontal and near horizontal gas liquid flow AIChE J. 22(1), 47–55 (1976)

    Article  Google Scholar 

  3. Martinelli, R.C., Nelson, D.B.: Prediction of pressure drop during forced – circulation boiling of water. Trans. ASME. 70, 695 (1948)

    Google Scholar 

  4. Chisholm D.: Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. Int. J. Heat Mass Transf. 16(2):347–358 ff. (1973)

    Article  Google Scholar 

  5. Friedel, L.: Improved friction pressure drop correlations for horizontal and vertical two phase pipe flow 3R Int. 18(7), 485–492 (1979)

    Google Scholar 

  6. Garcia, F., et al.: Power law and composite power law friction factor correlations for laminar and turbulent gas-liquid flow in horizontal pipes. Int. J. Multiphase Flow 29, 1605–1624 (2003)

    Article  Google Scholar 

  7. Friedel, L.: Gas/Dampf-Flüssigkeitsströmung, Grundlagen der Verfahrenstechnik. VDI Verlag, Düsseldorf (1983)

    Google Scholar 

  8. Baroczy, C.J.: Correlation of liquid fraction in two-phase flow with applications to liquid metals. Chem. Eng. Prog. Symp. Ser.61 (57), 175 (1965)

    Google Scholar 

  9. Lombardi, D., Pedrocchi, uE.: A pressure drop correlation in two-phase flow. Energ. Nucl. 19, 91 ff. (1972)

    Google Scholar 

  10. Mauro, A.W., et al.: Comparison of experimental pressure drop data for two phase flows to prediction methods using a general model. Int. J. Refrig. 30, 1358–1367 (2007)

    Article  Google Scholar 

  11. Quiben, J.M., Thome, J.R.: Flow pattern based two-phase frictional pressure drop model for horizontal tubes, part I: diabatic and adiabatic experimental study. Int. J. Heat Fluid Flow 28, 1049–1059 (2007)

    Article  Google Scholar 

  12. Quiben, J.M., Thome, J.R.: Flow pattern based two-phase frictional pressure drop model for horizontal tubes, part II: new phenomenological model. Int. J. Heat Fluid Flow 28, 1060–1072 (2007)

    Article  Google Scholar 

  13. Grönnerud, R.: Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type evaporators, part IV: two-phase flow resistance in boiling refrigerants, bull. De l’inst Du Froid, Annex 1972–1 (1979)

    Google Scholar 

  14. Storek, H., et al.: Druckverlust der adiabatischen Gas/Flüssigkeitsströmung in kreisrunden Rohren. Chem. Ing. Tech. 52(6), 531 (1980)

    Article  Google Scholar 

  15. Breggs, H.D., Brill, J.P.: A study of two-phase flow in inclined pipes. J. Petrol. Technol. 25(5), 607–617 (1973)

    Article  Google Scholar 

  16. Kadambi, V.: Void fraction and pressure drop in two-phase stratified flow Can. J. Chem. Eng. 59(10), 548–589 (1981)

    Google Scholar 

  17. Akai, M., et al.: The prediction of stratified two-phase flow with a twoequation model of turbulence. Int. J. Multiphase Flow 7(1), 21–39 (1981)

    Article  Google Scholar 

  18. Akai, M., et al.: A co-current stratified air-mercury flow with wavy interface. Int. J. Multiphase Flow 6(3), 173–190 (1980)

    Article  Google Scholar 

  19. Freeston, D.H.: A comparison of experimental results of pressure drop for two-phase steam/water and air/water mixtures in a horizontal pipe. In: 7th Australasian Hydraulics and Fluid Mechanics Conference, Brisbane, S. 424–426 (1980)

    Google Scholar 

  20. Herrn-Stapelberg, H., Mewes, D.: Gesetzmäßigkeiten der dreiphasigen Strömung von Öl, Wasser und Luft in horizontalen Rohrleitungen. VDI Forschungsheft 668/91. VDI Verlag, Düsseldorf (1998)

    Google Scholar 

  21. Mayinger, F.: Strömung und Wärmeübertragung in Gas-Flüssigkeitsgemischen. Springer, Wien/New York (1981)

    Google Scholar 

  22. Zheng, Q., Köhler, W., Kastner, W., Riedle, K.: Druckverlust in glatten und innenberippten Verdampferohren. Wärme- und Stoffübertragung 26, 323–330 (1991)

    Article  Google Scholar 

  23. Wieczorek, M., Friedel, L.: Verbesserte Bemessungsmethode für Vollhubsicherheitsventile bei nicht nachverdampfender Zweiphasenströmung. TÜ Nr. 6 (2004)

    Google Scholar 

  24. Ahmad, S.Y.: Axial distribution of bulk temperature and void fraction in a heated channel with inlet sub cooling. Trans. ASME J. Heat Transfer 92, 595–609 (1970)

    Article  Google Scholar 

  25. Chisholm, D.: Two Phase Flow in Pipelines and Heat Exchangers. George Godwin, London/New York (1983)

    Google Scholar 

  26. Chisholm, D.: Two phase pressure drop in bends. Int. J. Multiphase Flow 6(4), 363–367 (1980)

    Article  Google Scholar 

  27. Fitzsimmons, D.E.: Two Phase Pressure Drop in Piping Components. HW-80970, Rev.1. General Electric Hanford Laboratories, Richland (1964)

    Google Scholar 

  28. Freeston, D.H., et al.: Two phase pressure drop measurements on a geothermal pipeline. Trans. Geothermal. Res. Council 9(9), 233–236 (1979)

    Google Scholar 

  29. Shimizu, Y., et al.: Hydraulic losses and flow patterns of swirling flow in U-bends. Bull. JSME. 23(183), 1443–1450 (1980)

    Article  Google Scholar 

  30. Usui, K., et al.: Flow behavior and pressure drop of two-phase flow through C-shaped bend in vertical plane, (I) upward flow (II) downward flow J. Nucl. Sci. Technol. 17(12) (1981), (1980) u. Bd. 18(3)

    Google Scholar 

  31. Azzi, A., Friedel, L.: Two-phase upward flow 90° bend pressure loss model. Forsch. Ingenieurwes. 69, 120–113. Berlin, Springer (2005)

    Google Scholar 

  32. Schmidt, J.: Berechnung und Messung der Druckänderungen über scharfkantige plötzliche Rohrerweiterungen und -verengungen bei Gas/ Dampf-Flüssigkeitsströmung. VDI Fortschr. ber. Nr. 236. Reihe 7 (1993)

    Google Scholar 

  33. Rouhani, S.Z.: Modified correlations for void and two-phase pressure drop. Report AE-RTV-841, atomenergy AB (1974)

    Google Scholar 

  34. Guglielmini, G., et al.: Two phase flow pressure drops across sudden area contractions. In: Proceedings of the 8th International Conference, San Francisco, Bd. 5, S. 2361–2366 (1986)

    Google Scholar 

  35. Harshe, B.L.: Two phase pressure loss across short abrupt contraction expansion geometries in horizontal flow. Dissertation, University of Cincinnati, Cincinnati (1975)

    Google Scholar 

  36. Zetzmann, K.: Phasenseparation und Druckabfall in zweiphasig durchströmten vertikalen Rohrabzweigungen. Dissertation, Universität Hannover (1982)

    Google Scholar 

  37. Honan, T.J., et al.: The measurement of phase separation in wyes and tees. Nucl. Eng. Des. 64, 93–102 (1981)

    Article  Google Scholar 

  38. Whalley, P.B., et al.: Two-phase flow in a T-junction. AERE-Report R 9699 (1980)

    Google Scholar 

  39. Henry, J.A.: Dividing annular flow in a horizontal tee. Int. J. Multiphase Flow 7(3), 343–355 (1981)

    Article  Google Scholar 

  40. Kubie, J., et al.: Two-phase steam-water flow through Y-junctions. Int. J. Heat Fluid Flow 1(4), 161–167 (1979)

    Article  Google Scholar 

  41. Skorek, T., Domanski, R.: Modeling of two-phase flow in dividing T-junctions with various branch orientations. Arch. Thermodyn. 16(1–2), 53–84 (1995)

    Google Scholar 

  42. Leung, J.C.: Easily size relief devices and piping for two-phase flow. Chem. Eng. Prog. 92(12), 28–50 (1996)

    Google Scholar 

  43. API Standard 520: American Petroleum Institute, 9. Aufl. (Juli 2014)

    Google Scholar 

  44. Schmidt, J.: Sizing of nozzles, venturis, orifices, control and safety valves for initially sub-cooled gas/liquid two-phase flow – The HNE-DS method. Forsch. Ingenieurwes. 71, 47–58 (2007)

    Article  Google Scholar 

  45. Diener, R., Schmidt, J.: Sizing of throttling device for gas/liquid two-phase flow. Part 1: safety valves. Process. Saf. Prog. 23(4), 335–344 (2004)

    Article  Google Scholar 

  46. Wieczorek, M., Friedel, L.: Massendurchsatzkapazität von Vollhubsicherheitsventilen bei hochviskoser Flüssigkeitsströmung und Zweiphasenströmung Teil 1. TÜ. 44, 22–28. Verband der TÜV e.V., Berlin (2003)

    Google Scholar 

  47. Diener, R.: Berechnung und Messung der Massendurchsatzkapazität von Stellventilen bei Zweiphasenströmung. Fortschritts-Berichten VDI Reihe 7, Nr. 388 (2000)

    Google Scholar 

  48. Diener, R., Schmidt, J., Kiesbauer, J.: Einführung eines Expansionsfaktors zur Erweiterung der IEC 60534–2–1 für die Auslegung von Stellventilen bei Mehrphasenströmung. atp 46(6) (2004)

    Google Scholar 

  49. Diener, R., Schmidt, J.: Sizing of throttling device for gas/liquid two-phase flow. Part 2: control valves, orifices and nozzles. Process Saf. Prog. 24(1), 29–35 (2005)

    Article  Google Scholar 

  50. Sheldon C.W, Schuder C.B: Instruments & Control Systems – Sizing Control Valves for Liquid-Gas Mixtures, S. 134 (1965)

    Google Scholar 

  51. Lex, T.: Fluiddynamik von Gas-Flüssigkeitsgemischen in Kugelhähnen. Dissertation. ISBN 3-89963-081-5 (2004)

    Google Scholar 

  52. McNeil, D.A.: Two-phase flow in orifice plates and valves. Proc. Inst. Mech. Eng. 214(Part C), 743–756. Sage Publishing, Thousand Oaks (2000)

    Google Scholar 

  53. McNeil, D.A.: Two-phase momentum flux in pipes and its application to incompressible flow in nozzles. Proc. Inst. Mech. Eng. 212(Part C), 631–641. Sage Publishing, Thousand Oaks (1998)

    Google Scholar 

  54. Azzi, A., Friedel, L., Belaadi, S.: Two-phase gas/liquid flow pressure loss in bends. Forsch. Ingenieurwes. 65, 309–318 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Wellenhofer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wellenhofer, A. (2018). Druckabfall von Gas-Flüssigkeitsströmungen in Rohren, Leitungselementen und Armaturen. In: Stephan, P., Mewes, D., Kabelac, S., Kind, M., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas . Springer Reference Technik (). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52991-1_82-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52991-1_82-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52991-1

  • Online ISBN: 978-3-662-52991-1

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics