Skip to main content

Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover VDI-Wärmeatlas

Part of the book series: Springer Reference Technik ((VDISR))

  • 2244 Accesses

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Dieses Kapitel entstand unter Mitarbeit von Simon Maranda.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Alexiades, V., Solomon, A.D.: Mathematical Modeling of Melting and Freezing Processes. Taylor & Francis, Washington (1993)

    Google Scholar 

  2. Hauer, A., Hiebler, S., Reuß, M.: Wärmespeicher, 5., Vollst. BINE Informationsdienst. Fraunhofer IRB Verlag, Stuttgart (2010)

    Google Scholar 

  3. Beckmann, W. (Hrsg.): Crystallization. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2013)

    Google Scholar 

  4. Dincer, I., Rosen, M.A.: Thermal Energy Storage: Systems and Applications, 2. Aufl. Laserwords Private Limited, Chennai (2002)

    Google Scholar 

  5. Pielichowska, K., Pielichowski, K.: Phase change materials for thermal energy storage. Prog. Mater. Sci. 65, 67–123 (2014)

    Article  Google Scholar 

  6. Abhat, A.: Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energy 30(4), 313–332 (1983)

    Article  Google Scholar 

  7. Mehling, H., Cabeza, L.F.: Heat and Cold Storage with PCM. Springer, Berlin (2008)

    Book  Google Scholar 

  8. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen: VDI-Wärmeatlas, 11. Aufl. Springer, Berlin/Heidelberg/New York (2013)

    Google Scholar 

  9. Hirman, S., Suwono, A., Mansoori, G.A.: Characterization of alkanes and paraffin waxes for application as phase change energy storage medium. Energy Sources 16(1), 117–128 (1994)

    Article  Google Scholar 

  10. Yaws, C.L.: Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety, and Health Related Properties for Organic and Inorganic Chemicals. McGraw-Hill Education LLC, New York (1999)

    Google Scholar 

  11. Tanaka, Y., Itani, Y., Kubota, H., Makita, T.: Thermal conductivity of five normal alkanes in the temperature range 283–373K at pressures up to 250MPa. Int. J. Thermophys. 9(3), 331–350 (1988)

    Article  Google Scholar 

  12. Griesbaum, K., Behr, A., Biedenkapp, H., Voges, D., Garbe, H.-W., Paetz, D., Collin, C., Mayer, G., Höke, D.: Hydrocarbons. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, New York (2000)

    Google Scholar 

  13. Bo, H., Gustafsson, E.M., Setterwall, F.: Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy 24(12), 1015–1028 (1999)

    Article  Google Scholar 

  14. Vélez, C., Ortiz De Zarate, J.M., Khayet, M.: Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region. Int. J. Therm. Sci. 94, 139–146 (2015)

    Article  Google Scholar 

  15. Knothe, G., Steidley, K.R.: Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84(9), 1059–1065 (2005)

    Article  Google Scholar 

  16. Vélez, C., Khayet, M., Ortiz De Zarate, J.M.: Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: N-Hexadecane, n-octadecane and n-eicosane. Appl. Energy 143, 383–394 (2015)

    Article  Google Scholar 

  17. Caudwell, D.R., Trusler, J.P.M., Vesovic, V., Wakeham, W.A.: The viscosity and density of n-dodecane and n-octadecane at pressures up to 200 MPa and temperatures up to 473 K. Int. J. Thermophys. 25(5), 1339–1352 (2004)

    Article  Google Scholar 

  18. Chu, L.T., Sindilariu, C., Freilich, A., Fried, V.: Some physical properties of long chain hydrocarbons. Can. J. Chem. 64, 1–3 (1986)

    Article  Google Scholar 

  19. Queimada, A.J., Quinones-Cisneros, S.E., Marrucho, I.M., Coutinho, J.A.P., Stenby, E.H.: Hydrocarbon mixtures 1. Int. J. Thermophys. 24(5), 1221–1239 (2003)

    Article  Google Scholar 

  20. Paris, J., Falardeau, M., Villeneuve, C.: Thermal storage by Latent heat: A viable option for energy conservation in buildings. Energy Sources 15(1), 85–93 (1993)

    Article  Google Scholar 

  21. Vargaftik, N.B., Filippov, L.P., Taryimanov, A.A., Totskii, E.E.: Handbook of Thermal Conductivity of Liquid and Gases. Energoatomizdat Publishing House, Moscow (1994)

    Google Scholar 

  22. Jin, Y., Wunderlich, B.: Heat capacities of paraffins and polyethylene. J. Phys. Chem. 95(22), 9000–9007 (1991)

    Article  Google Scholar 

  23. Anneken, D.J., Both, S., Chistoph, R., Fieg, G., Steinberger, U., Westfechtel, A.: Fatty acids. In: Ullmann’s Encyclopedia of Industrial Chemistry, 547–572. .(2012)

    Google Scholar 

  24. Putnam, W.E., McEachern, D.M., Kilpatrick, J.E.: Entropy and related thermodynamic properties of acetonitrile (methyl cyanide). J. Chem. Phys. 42(2), 749–755 (1965)

    Article  Google Scholar 

  25. D. Velzen van, R. L. Cardozo, and H. Langenkamp, „A liquid viscosity-temperature-chemical constitution relation for organic compounds.“ Ind. Eng. Chem. Fundam. 11(1), 20–25 (1972)

    Google Scholar 

  26. Mackay, D., Shiu, W.Y., Ma, K., Lee, S.C.: Properties and Environmental Fate Second Edition Introduction and Hydrocarbons vol. III, no. 14(2006)

    Google Scholar 

  27. Wolfram, J.: Messungen der Wärmeleitfähigkeit von organischen, aliphatischen Flüssigkeiten und von Gasen nach einem instationären Absolutverfahren (1964)

    Google Scholar 

  28. Perry, R.H., Green, D.W., Maloney, J.O.: Perry’s Chemical Engineers’ Handbook, 7 Aufl., Bd. 27 (1997)

    Google Scholar 

  29. Ahluwalia, R., Wanchoo, R.K., Sharma, S.K., Vashisht, J.L.: Density, viscosity, and surface tension of binary liquid systems: Ethanoic acid, propanoic acid, and butanoic acid with nitrobenzene. J. Solut. Chem. 25(9), 905–917 (1996)

    Article  Google Scholar 

  30. Lane, G.A.: Low temperature heat storage with phase change materials. Int. J. Ambient Energy 1(3), 155–168 (1980)

    Article  Google Scholar 

  31. Lutton, E.S.: Fatty Acids: Their Chemistry, Properties, Production and Uses. Interscience, New York (1967)

    Google Scholar 

  32. Desgrosseilliers, L., Whitman, C.A., Groulx, D., White, M.A.: Dodecanoic acid as a promising phase-change material for thermal energy storage. Appl. Therm. Eng. 53(1), 37–41 (2013)

    Article  Google Scholar 

  33. Karaipekli, A., Sari, A., Kaygusuz, K.: Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications. Renew. Energy 32(13), 2201–2210 (2007)

    Article  Google Scholar 

  34. Nunes, V.M.B., Queirós, C.S., Lourenço, M.J.V., Santos, F.J.V., Nieto de Castro, C.A.: Molten salts as engineering fluids – a review: Part I. Molten alkali nitrates. Appl. Energy 183, 603–611 (2016)

    Google Scholar 

  35. Stamatiou, A., Obermeyer, M., Fischer, L.J., Schuetz, P., Worlitschek, J.: Investigation of unbranched, saturated, carboxylic esters as phase change materials. Renew. Energy 108, 401–409 (2017)

    Article  Google Scholar 

  36. Pratas, M.J., Freitas, S., Oliveira, M.B., Monteiro, S.C., Lima, A.S., Coutinho, J.A.P.: Densities and viscosities of fatty acid methyl and ethyl esters. J. Chem. Eng. Data 55(9), 3983–3990 (2010)

    Article  Google Scholar 

  37. Babich, M.W., Hwang, S.W., Mounts, R.D.: The thermal analysis of energy storage materials by differential scanning calorimetry. Thermochim. Acta. 210, 77–82 (1992)

    Article  Google Scholar 

  38. Suppes, G.J., Goff, M.J., Lopes, S.: Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 58(9), 1751–1763 (2003)

    Article  Google Scholar 

  39. Wirth, E., Droege, J.W., Wood, H.: Low Temperature Heat Capacity of Palmitic Acid and Methyl Palmitate, 60(6), 917–918 (1956)

    Google Scholar 

  40. Aydin, A.A., Okutan, H.: High-chain fatty acid esters of myristyl alcohol with odd carbon number: Novel organic phase change materials for thermal energy storage – 2. Sol. Energy Mater. Sol. Cells 95(8), 2417–2423 (2011)

    Article  Google Scholar 

  41. Aydin, A.A.: High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters’ homologous series. Sol. Energy Mater. Sol. Cells 113, 44–51 (2013)

    Article  Google Scholar 

  42. Peter, K., Vollhardt, C., Schore, N.E.: Organische Chemie. VCH Verlagsgesellschaft, Weinheim (1990)

    Google Scholar 

  43. Noweck, K., Grafahrend, W.: Fatty alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry, 547–572 (2012)

    Google Scholar 

  44. Van Miltenburg, J.C., Gabrielová, H., Růžička, K.: Heat capacities and derived thermodynamic functions of 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol between 5 K and 390 K. J. Chem. Eng. Data 48(5), 1323–1331 (2003)

    Article  Google Scholar 

  45. Yaws, C.L.: Handbook of Thermal Conductivity, Volume 3: Organic Compounds C8 to C28. Gulf Publishing, Houston (1995)

    Google Scholar 

  46. Al-Jimaz, A.S., Al-Kandary, J.A., Abdul-Latif, A.H.M.: Densities and viscosities for binary mixtures of phenetole with 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol at different temperatures. Fluid Phase Equilib. 218(2), 247–260 (2004)

    Article  Google Scholar 

  47. Nichols, G. et al.: Evaluation of the Vaporization , Fusion , and Sublimation Enthalpies of the 298.15 K by Correlation Gas Chromatography, J. Chem. Eng. Data, 475–482 (2006)

    Article  Google Scholar 

  48. Khasanshin, T.S., Zykova, T.B.: Specific heat of saturated monatomic alcohols. J. Eng. Phys. 56(6), 698–700 (1989)

    Article  Google Scholar 

  49. Shan, Z., Asfour, A.-F.A.: Viscosities and densities of nine binary 1-alkanol systems at 293,15 K and 298,15 K. J. Chem. Eng. Data 44(1), 118–123 (1999)

    Article  Google Scholar 

  50. Acree William, J., Chickos, J.S.: Phase transition enthalpy measurementsof organic and organometallic compounds. Sublimation, vaporizationand fusion enthalpies from 1880 to 2010. J. Phys. Chem. Ref. Data 39(4), 43101 (2010)

    Article  Google Scholar 

  51. Matsuo, S., Makita, T.: Viscosities of six 1-Alkanols at temperatures in the range 298–348 K and pressures up to 200 MPa. Int. J. Thermophys. 10(4), 833–843 (1989)

    Article  Google Scholar 

  52. Mosselman, C., Mourik, J., Dekker, H.: Enthalpies of phase change and heat capacities of some long-chain alcohols. Adiabatic semi-microcalorimeter for studies of polymorphism. J. Chem. Thermodyn. 6(5), 477–487 (1974)

    Article  Google Scholar 

  53. Mosselman, C., Dekker, H.: Enthalpies of formation of nitroalkanes, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 417–424 (1973)

    Google Scholar 

  54. Ventola, L., et al.: Melting behaviour in the n-alkanol family. Enthalpy-entropy compensation. Phys. Chem. Chem. Phys. 6(8), 1786–1791 (2004)

    Article  Google Scholar 

  55. Xing, J., Tan, Z.C., Shi, Q., Tong, B., Wang, S.X., Li, Y.S.: Heat capacity and thermodynamic properties of 1-hexadecanol. J. Therm. Anal. Calorim. 92(2), 375–380 (2008)

    Article  Google Scholar 

  56. Van Miltenburg, J.C., Oonk, H.A.J., Ventola, L.: Heat capacities and derived thermodynamic functions of 1-octadecanol, 1-nonadecanol, 1-eicosanol, and 1-docosanol between 10 K and 370 K. J. Chem. Eng. Data 46(1), 90–97 (2001)

    Article  Google Scholar 

  57. Schiweck, H. et al.: Sugar alcohols. In: Ullmann’s Encyclopedia of Industrial Chemistry, S. 2–32 (2012)

    Google Scholar 

  58. Kaizawa, A., et al.: Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat Mass Transf. 44(7), 763–769 (2008)

    Article  Google Scholar 

  59. Barone, G., Della Gatta, G., Ferro, D., Piacente, V.: Enthalpies and entropies of sublimation, vaporization and fusion of nine polyhydric alcohols. J. Chem. Soc. Faraday Trans. 86(1), 75 (1990)

    Article  Google Scholar 

  60. Höhlein, S., König-Haagen, A., Brüggemann, D.: Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES). Materials (Basel) 10(4), 444 (2017)

    Article  Google Scholar 

  61. Parks, G.S., Huffman, M.: Thermal data on organic compounds. IV. The heat capacities, entropies and free energies of normal propyl alcohol, ethyl ether and dulctitol, Therm. Data Org. Compd. 48(1925), 2788–2793 (1926)

    Google Scholar 

  62. Zhu, C., Ma, Y., Zhou, C.: Densities and viscosities of sugar alcohol aqueous solutions. J. Chem. Eng. Data. 55(9), 3882–3885 (2010)

    Article  Google Scholar 

  63. Lebrun, N., Van Miltenburg, J.C.: Calorimetric study of maltitol: Correlation between fragility and thermodynamic properties. J. Alloys Compd. 320(2), 320–325 (2001)

    Article  Google Scholar 

  64. Kumaresan, G., Velraj, R., Iniyan, S.: Thermal analysis of D-mannitol for use as phase change material for latent heat storage. J. Appl. Sci. 11(16), 3044–3048 (2011)

    Article  Google Scholar 

  65. Gawron, K., Schröder, J.: Properties of some salt hydrates for latent heat storage. Int. J. Energy Res. 1(4), 351–363 (1977)

    Article  Google Scholar 

  66. Eva, G., Mehling, H., Werner, M.: Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J. Phys. D Apppl. Phys. 40, 4636–4641 (2007)

    Article  Google Scholar 

  67. Shamberger, P.J., Reid, T.: Thermophysical properties of potassium fluoride tetrahydrate from (243 to 348) K. J. Chem. Eng. Data 58(2), 294–300 (2013)

    Article  Google Scholar 

  68. Nagano, K., Mochida, T., Takeda, S., Domański, R., Rebow, M.: Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng. 23(2), 229–241 (2003)

    Article  Google Scholar 

  69. Shamberger, P.J., Reid, T.: Thermophysical properties of lithium nitrate trihydrate from (253 to 353) K. J. Chem. Eng. Data 57(5), 1404–1411 (2012)

    Article  Google Scholar 

  70. Hale, B.D.V. et al.: Phase Change Materials Handbook. Nasa Contractor Report Nasa Cr-51363 (1971)

    Google Scholar 

  71. Patnaik, P.: Handbook of Inorganic Chemicals. McGraw-Hill, New York (2003)

    Google Scholar 

  72. Ruben, H.W., Olovsson, I., Templeton, D.H., Rosenstein, R.D.: Crystal structure and entropy of sodium sulfate decahydrate. J. Am. Chem. Soc. 83(4), 820–824 (1961)

    Article  Google Scholar 

  73. Kobe, K.A., Anderson, C.H.: The heat capacity of saturated sodium sulfate solution. J. Phys. Chem. 40(4), 429–433 (1935)

    Article  Google Scholar 

  74. Sharma, S.K., Jotshi, C.K., Singh, A.: Viscosity of molten sodium salt hydrates. J. Chem. Eng. Data 29(2), 245–246 (1984)

    Article  Google Scholar 

  75. Vanderzee, E.: J. Chem. Thermodyn. 14(3), 219–238 (1982)

    Google Scholar 

  76. Grönvold, F., Meisingset, K.K.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K. J. Chem. Thermodyn. 14(11), 1083–1098 (1982)

    Article  Google Scholar 

  77. Glasser, L.: Thermodynamics of inorganic hydration and of humidity control, with an extensive database of salt hydrate pairs. J. Chem. Eng. Data 59(2), 526–530 (2014)

    Article  Google Scholar 

  78. Naumann, R., Emons, H.H.: Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J. Therm. Anal. 35(3), 1009–1031 (1989)

    Article  Google Scholar 

  79. Lorsch, H.G., Kauffman, K.W., Denton, J.C.: Thermal energy storage for solar heating and off-peak air conditioning. Energy Convers 15(1–2), 1–8 (1975)

    Article  Google Scholar 

  80. Yinping, Z., Yi, J., Yi, J.: A simple method, the -history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 10(3), 201–205 (1999)

    Article  Google Scholar 

  81. Meisingset, K.K., Gronvold, F.: Thermodynamic properties and phase transitions of salt hydrates between 270 and 400 K III. CH3CO2Na 3H2O, CH3CO2Li 2H2O, and (CH3CO2)2Mg 4H2O. J. Chem. Thermodyn. 16(6), 523–536 (1984)

    Article  Google Scholar 

  82. Larranaga, M.D., Lewis, R.J., Lewis, R.A.: Hawley’s Condensed Chemical Dictionary, 16. Aufl. Wiley, Hoboken (2016)

    Book  Google Scholar 

  83. Pielichowski, K., Flejtuch, K.: Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 13, 690–696 (2002)

    Article  Google Scholar 

  84. Tyagi, O.S., Bisht, H.S., Chatterjee, A.K.: Phase transition, conformational disorder, and chain packing in crystalline long-chain symmetrical alkyl ethers and symmetrical alkenes. J. Phys. Chem. B. 108(9), 3010–3016 (2004)

    Article  Google Scholar 

  85. Oyama, H., et al.: Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilib. 234(1–2), 131–135 (2005)

    Article  Google Scholar 

  86. Belandria, V., Mohammadi, A.H., Dominique, R.: Volumetric properties of the (tetrahydrofuran + water) and (tetra-n-butyl ammonium bromide + water) systems: Experimental measurements and correlations (TBAB). J. Chem. Thermodyn. 41, 1382–1386 (2009)

    Article  Google Scholar 

  87. Nagatomi, T.: Thermal conductivity measurement of TBAB hydrate by the transient hot-wire using parylene-coated probe. (2013)

    Google Scholar 

  88. BASF The Chemical Company: Technisches Merkblatt AdBlue. (2006)

    Google Scholar 

  89. Wei, G. et al.: Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 0–1 (2017)

    Google Scholar 

  90. Raud, R., Cholette, M.E., Riahi, S., Bruno, F., Saman, W.: Design optimization method for tube and fin latent heat thermal energy storage systems. Energy 134, 585–594 (2017)

    Article  Google Scholar 

  91. Dinker, A., Agarwal, M., Agarwal, G.D.: Heat storage materials, geometry and applications: A review. J. Energy Inst. 90(1), 1–11 (2017)

    Article  Google Scholar 

  92. Lizana, J., Chacartegui, R., Barrios-Padura, A., Valverde, J.M.: Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energy 203, 219–239 (2017)

    Article  Google Scholar 

  93. Fleischer, A.S.: Thermal Energy Storage Using Phase Change Materials: Fundamentals and Applications. Springer, Villanova (2015)

    Book  Google Scholar 

  94. Kaizawa, A., et al.: Thermal and flow behaviors in heat transportation container using phase change material. Energy Convers. Manag. 49(4), 698–706 (2008)

    Article  Google Scholar 

  95. Fischer, L.J., von Arx, S., Wechsler, U., Züst, S., Worlitschek, J.: Phase change dispersion properties, modeling apparent heat capacity. Int. J. Refrig. 74, 240–253 (2017)

    Article  Google Scholar 

  96. Weiss, L., Züst, S., Fischer, L., Worlitschek, J., Reinhard, E.: Vorrichtung zur Kühlung von Maschinenbauteilen mittels PCM, EP2949422 (2014)

    Google Scholar 

  97. Mehling, H., Cabeza, L.F.: Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications. (2008)

    Google Scholar 

  98. Kauffeld, M., Wang, M.J., Goldstein, V., Kasza, K.E.: Ice slurry applications. Int. J. Refrig. 33(8), 1491–1505 (2010)

    Article  Google Scholar 

  99. Egolf, P.W., Kauffeld, M.: From physical properties of ice slurries to industrial ice slurry applications. Int. J. Refrig. 28(1), 4–12 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger Josef Fischer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fischer, L.J. (2019). Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher. In: Stephan, P., Mewes, D., Kabelac, S., Kind, M., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas . Springer Reference Technik (). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52991-1_116-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52991-1_116-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52991-1

  • Online ISBN: 978-3-662-52991-1

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher
    Published:
    10 November 2018

    DOI: https://doi.org/10.1007/978-3-662-52991-1_116-2

  2. Original

    Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher
    Published:
    10 September 2018

    DOI: https://doi.org/10.1007/978-3-662-52991-1_116-1