Skip to main content

General Perturbations Theory

  • Chapter
  • First Online:
  • 3039 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 436))

Abstract

We have seen the complexity of the problem when more than two gravitating masses are involved. We have seen two methods of determining the orbits, Cowell’s and Encke’s methods . Now, let us look at the basic mathematical description of the perturbation problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Battin, R.: An Introduction to the Mathematics and Methods of Astrodynamics. American Institute of Aeronautics and Astronautics, New York (1999)

    Book  MATH  Google Scholar 

  • Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)

    MATH  Google Scholar 

  • Brown, E.W.: An Introductory Treatise on the Lunar Theory. The University Press, Cambridge (1896)

    MATH  Google Scholar 

  • Carpenter, L.: Planetary perturbations in Chebyshev series. Tech. Rep. NASA TN D-3168, National Aeronautics and Space Administration, Washington, DC (1966)

    Google Scholar 

  • Cook, A.H.: The contribution of observations of satellites to the determination of the Earth’s gravitational potential. Space Sci. Rev. 2, 355–437 (1963)

    Article  ADS  Google Scholar 

  • Cook, G.E.: Satellite drag coefficients. Planet. Space Sci. 13 (10), 929–946 (1965)

    Article  ADS  Google Scholar 

  • Efroimsky, M.: Equations for the orbital elements. hidden symmetry. Preprint No 1844 of the Institute of Mathematics and its Applications, University of Minnesota (http://www.ima.umn.edu/preprints/feb02/1844.pdf) (2002)

    Google Scholar 

  • Efroimsky, M., Goldreich, P.: Gauge symmetry of the n-body problem in the Hamilton-Jacobi approach. J. Math. Phys. 44, 5958–5977 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Efroimsky, M., Goldreich, P.: Gauge freedom in the n-body problem of celestial mechanics. Astron. Astrophys. 415, 1187–1199 (2004)

    Article  ADS  MATH  Google Scholar 

  • Fukushima, T., Arakida, H.: Long-term integration error of Kustaanheimo-Stiefel regularized orbital motion. Astron. J. 120 (6), 3333–3339 (2000)

    Article  ADS  Google Scholar 

  • Fuller, J.D., Tolson, R.H.: Improved method for the estimation of spacecraft free-molecular aerodynamic properties. J. Spacecr. Rocket. 46 (5), 938–948 (2009)

    Article  ADS  Google Scholar 

  • Gutzwiller, M.C., Schmidt, D.S.: The motion of the Moon as computed by the method of Hill, Brown, and Eckert. Astron. Papers Part I 23, 1–272 (1986)

    Google Scholar 

  • Hagihara, Y.: Stability in celestial mechanics. Scr. Metall. 1 (1957)

    Google Scholar 

  • Hagihara, Y.: Celestial Mechanics, vol. II. Perturbation Theory. MIT Press, Cambridge (1972)

    MATH  Google Scholar 

  • Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Publishing, New York (1965)

    MATH  Google Scholar 

  • Junkins, J.L., Singla, P.: How nonlinear is it? a tutorial on nonlinearity of orbit and attitude dynamics. J. Astronaut. Sci. 52 (1 and 2), 7–60 (2004)

    Google Scholar 

  • King-Hele, D.G.: The effect of the Earth’s oblateness on the orbit of a near satellite. Proc. R. Soc. Lond. Sei. A Math. Phys. Sci. 247 (1248), 49–72 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kustaanheimo, P., Stiefel, E.: Perturbation theory of Kepler motion based on spinor regularization. J. Reine. Angew. Math. 218, 204 (1965)

    MathSciNet  MATH  Google Scholar 

  • Laskar, J.: Chaotic diffusion in the solar system. Icarus 196 (1), 1–15 (2008)

    Article  ADS  Google Scholar 

  • Laskar, J., Fienga, A., Gastineau, M., Manche, H.: La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011)

    Article  ADS  MATH  Google Scholar 

  • Liu, L., Zhao, D.: Combined perturbation on near-Earth satellite orbits. Chin. Astron. Astrophys. 5, 422–433 (1981)

    Article  ADS  Google Scholar 

  • Marcos, F.A.: Accuracy of atmospheric drag models at low satellite altitudes. Adv. Space Res. 10 (3), 417–422 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • McCuskey, S.W.: Introduction to Celestial Mechanics. Addison-Wesley, Reading (1963)

    MATH  Google Scholar 

  • Moe, K., Moe, M.M., Wallace, S.D.: Improved satellite drag coefficient calculations from orbital measurements of energy accommodation. J. Spacecr. Rocket. 35 (3), 266–272 (1998)

    Article  ADS  Google Scholar 

  • Newman, W., Efroimsky, M.: The method of variation of constants and multiple time scales in orbital mechanics. Chaos 13, 476–485 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Prieto, D.M., Graziano, B.P., Roberts, P.C.E.: Spacecraft drag modelling. Prog. Aerosp. Sci. 64, 56–65 (2014)

    Article  Google Scholar 

  • Sharma, R.K., Raj, M.X.J.: Long-term orbit computations with KS uniformly regular canonical elements with oblateness. Earth Moon Planet. 42, 163–178 (1988)

    Article  ADS  Google Scholar 

  • Sharma, R.K., Raj, M.X.J.: Contraction of near-Earth satellite orbits using uniformly regular KS canonical elements in an oblate atmosphere with density scale height variation with altitude. Planet. Space Sci. 57, 34–41 (2009)

    Article  ADS  Google Scholar 

  • Smart, W.M.: Celestial Mechanics. Longmans, London (1960)

    MATH  Google Scholar 

  • Stiefel, E., Scheifele, G.: Linear and Regular Celestial Mechanics. Springer, Berlin, Heidelberg, New York (1971)

    Book  MATH  Google Scholar 

  • Stone, W.C., Witzgall, C.: Evaluation of aerodynamic drag and torque for external tanks in low Earth orbit. J. Res. Natl. Inst. Stand. Technol. 111 (2), 143 (2006)

    Article  Google Scholar 

  • Storz, M.F., Bowman, B.R., Branson, M.J.I., Casali, S.J., Tobiska, W.K.: High accuracy satellite drag model (HASDM). Adv. Space Res. 36 (12), 2497–2505 (2005)

    Article  ADS  Google Scholar 

  • Sutton, E.K.: Normalized force coefficients for satellites with elongated shapes. J. Spacecr. Rocket. 46 (1), 112–116 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Fredo, R.M., Kaplan, M.H.: Procedure for obtaining aerodynamic properties of spacecraft. J. Spacecr. Rocket. 18 (4), 367–373 (1981)

    Article  ADS  Google Scholar 

  • Vallado, D.: Fundamentals of Astrodynamics and Applications, 2nd edn. Microcosm Press and Kluwer Academic Publishers, El Segundo (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurfil, P., Seidelmann, P.K. (2016). General Perturbations Theory. In: Celestial Mechanics and Astrodynamics: Theory and Practice. Astrophysics and Space Science Library, vol 436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50370-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50370-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50368-3

  • Online ISBN: 978-3-662-50370-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics