Skip to main content

Stress und Stressresistenz

  • Chapter
  • First Online:
Pflanzenphysiologie
  • 13k Accesses

Zusammenfassung

Nichtoptimale Umweltbedingungen bewirken auch bei Pflanzen Stress. Die physiologischen Grundlagen der Stresserscheinungen und der Mechanismen, welche die Pflanzen gegen die störenden oder schädigenden Einflüsse von Stressfaktoren entwickelt haben, sind ein zentrales Thema der derzeitigen Forschung.Die Beschäftigung mit diesem Gebiet ist nicht zuletzt deswegen von großer Bedeutung,weil die Fähigkeit zur Stressbewältigung die klimatischen Anbaugrenzen von Kulturpflanzen festlegt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

a. Übergreifende Monographien

  • Alscher RG, Cumming JR (eds) (1990) Stress reponses in plants: Adaptation and acclimation mechanisms.Wiley-Liss, New York

    Google Scholar 

  • Brunold C, Rüegsegger A, Brändle R (Hrsg) (1996) Stress bei Pflanzen. Haupt, Bern

    Google Scholar 

  • Hirt H, Shinozaki K (eds) (2003) Plant responses to abiotic stress. Topics in current genetics Vol 4, Springer, Berlin

    Google Scholar 

  • Hock B, Elstner EF (Hrsg) (1995) Schadwirkungen auf Pflanzen. 3. Aufl. Spektrum, Heidelberg

    Google Scholar 

  • Scheel D,Wasternack C (eds) (2002) Plant signal transduction. Oxford University Press, Oxford

    Google Scholar 

  • Smallwood MF, Calvert CM, Bowles DJ (eds) (1999) Plant responses to environmental stress. Bios Scientific, Oxford

    Google Scholar 

  • Smirnoff N (ed) (1995) Environment and plant metabolism. Flexibility and acclimation. Bios Scientific, Oxford

    Google Scholar 

b. Mechanischer Stress

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60: 357–364

    Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3: 83–110

    Google Scholar 

  • Jaffe MJ, Leopold AC, Staples RC (2002) Thigmo responses in plants and fungi. Amer J Bot 89: 375–382

    Google Scholar 

  • Mitchell CA, Myers PN (1995) Mechanical stress regulation of plant growth and development. Horticult Rev 17: 1–42

    Google Scholar 

c. Trocken- und Salzstress

  • Bailey-Serres J,Voesenek LACJ (2008) Flooding stress: Acclimations and genetic diversity. Annu Rev Plant Biol 59: 313–339

    Google Scholar 

  • Black M, Pritchard HW (eds) (2002) Desiccation and survival in plants. CABI Publ,Wallingford

    Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2: 48–54

    Google Scholar 

  • Davies WJ, Mansfield TA, Hetherington AM (1990) Sensing of soil water status and the regulation of plant growth and development. Plant Cell Environ 13: 709–719

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463–499

    Google Scholar 

  • Hoekstra FA, Golovina EA, Buitinik J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6: 431–438

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59: 651–681

    Google Scholar 

  • Schachman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13: 281–287

    Google Scholar 

  • Voesenek LACJ, van der Veen R (1994) The role of phytohormones in plant stress: Too much or too little water. Acta Bot Neerl 43: 91–127

    Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247–273

    Google Scholar 

d. Temperaturstress

  • Griffith M, Yaish WF (2004) Antifreeze proteins in overwintering plants: A tale of two activities. Trends Plant Sci 9: 399–405

    Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53: 225–245

    Google Scholar 

  • Li PH, Chen TTH (eds) (1997) Plant cold hardiness.Molecular biology, biochemistry, and physiology. Plenum, New York

    Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87: 417–424

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Springer, Berlin (Ecological Studies,Vol LXII)

    Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118: 1–7

    Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50: 571–599

    Google Scholar 

  • Turner NC, Kramer PJ (eds) (1980) Adaptation of plants to water and high temperature stress.Wiley, New York

    Google Scholar 

  • Wang W,Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9: 244–252

    Google Scholar 

e. Oxidativer Stress

  • Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction.Annu Rev Plant Biol 55: 373–399

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their function. Plant Physiol 141: 391–396

    Google Scholar 

  • Dat JF, Inzé D, Van Breusegem F (2001) Catalase-deficient tobacco plants: Tools for in planta studies on the role of hydrogen peroxide. Redox Reports 6: 37–42

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141: 312–322

    Google Scholar 

  • Halliwell B,Gutteridge JMC (2006) Free radicals in biology and medicine. 4. ed, Clarendon Press, Oxford

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405–410

    Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: Electron transport,NADPH turnover, and metabolism of reactive oxygen species.Annu Rev Plant Physiol Plant Mol Biol 52: 561–591

    Google Scholar 

  • Møller IM, Jensen PE; Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58: 459–481

    Google Scholar 

  • Smirnoff N (ed) (2006) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford

    Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: Production, detoxification and signaling.Trends Plant Sci 14: 219–228

    Google Scholar 

f. Licht- und UV-Stress

  • Asada K (1996) Radical production and scavenging in the chloroplast. In: Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht, pp. 123–150

    Google Scholar 

  • Demmig-Adams B,Adams WW,Mattoo A (2005) Photoprotection, photoinhibition, gene regulation and environment. Advances in photosynthesis and respiration,Vol 21, Springer, Berlin

    Google Scholar 

  • Eskling M, Arvidsson P-O, Akerlund H-E (1997) The xanthophyll cycle, its regulation and compounds. Physiol Plant 100: 806–816

    Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: Balancing damage, repair and acclimation. Trends Plant Sci 3: 131–135

    Google Scholar 

  • Li Z,Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60: 239–260

    Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125: 1558–1566

    Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359

    Google Scholar 

  • Ort DR,Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5: 193–198

    Google Scholar 

  • Owens TG (1996) Processing of excitation energy by antenna pigments. In: Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht, pp 1–23

    Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytol 155: 349–361

    Google Scholar 

  • Vonarx EJ, Mitchell HL, Karthikeyan R, Chatterjee I, Kunz BA (1998) DNA repair in higher plants.Mutat Res 400: 187–200

    Google Scholar 

In Abbildung und Tabellen zitierte Literatur

  • Anderson JM, Osmond CB (1987) In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 1–38

    Google Scholar 

  • Asworth EN (1990) Plant Physiol 92: 718–725

    Google Scholar 

  • Bieza K, Lois R (2001) Plant Physiol 126: 1105–1115

    Google Scholar 

  • Björkman O, Badger MR, Armond PA (1980) In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress.Wiley, New York, pp 233–249

    Google Scholar 

  • Caldwell MM (1981) In: Encycl Plant Physiol NS, Vol XIIA. Springer, Berlin, pp 169–197

    Google Scholar 

  • Chen H-H, Li PH, Brenner ML (1983) Plant Physiol 71: 362–365

    Google Scholar 

  • Deering GA (1962) Sci Amer 207/12: 135–144

    Google Scholar 

  • Demmig-Adams B, Gilmore AM, Adams WW (1996) FASEB J 10: 403–412

    Google Scholar 

  • Fischer K, Schopfer P (1997) Protoplasma 196: 108–116

    Google Scholar 

  • Fitter A, Hay R (2002) Environmental physiology of plants. 3. ed, Academic Press, San Diego

    Google Scholar 

  • Green AES, Cross KR, Smith LA (1980) Photochem Photobiol 31: 59–65

    Google Scholar 

  • Halliwell B,Gutteridge JMC (2006) Free radicals in biology and medicine. 4. ed, Clarendon Press, Oxford

    Google Scholar 

  • Handa AK, Bressan RA, Handa S, Hasegawa PM (1982) Plant Physiol 69: 514–421

    Google Scholar 

  • Hanson AD, Hitz WD (1982) Annu Rev Plant Physiol 33: 163–203

    Google Scholar 

  • Haußer KW, von Oehmke H (1933) Strahlentherapie 48: 223–229

    Google Scholar 

  • Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Phil Trans R Soc London (B) 273: 479–500

    Google Scholar 

  • Knight MR, Smith SM, Trewavas AJ (1992) Proc Natl Acad Sci USA 89: 4967–4971

    Google Scholar 

  • Lange OL, Schulze E-D, Kappen L, Buschbom U, Evenari M (1975) In: Gates DM, Schmerl RB (eds) Ecological Studies, Vol XII. Springer, Berlin, pp 121–143

    Google Scholar 

  • Lewitt J (1986) Plant Physiol 82: 147–153

    Google Scholar 

  • Lyman H, Epstein HT, Schiff JA (1961) Biochim Biophys Acta 50: 301–309

    Google Scholar 

  • Matsugana T, Hiedak K, Nikaido O (1991) Photochem Photobiol 54: 403–410

    Google Scholar 

  • McWilliam JR, Kramer PJ, Musser RL (1982) Aust J Plant Physiol 9: 343–352

    Google Scholar 

  • Osborne D (1977) Sci Progr Oxford 64: 51–63

    Google Scholar 

  • Pierce M, Raschke K (1980) Planta 148: 174–182

    Google Scholar 

  • Pihakaski-Maunsbach K, Tamminen I, Pietiäinen M,Griffith M (2003) Physiol Plant 118: 390–398

    Google Scholar 

  • Rupert CS (1960) In: Burton M,Kirby-Smith JS,Magee JL (eds) Comparative effects of radiation.Wiley, New York, pp 49–71

    Google Scholar 

  • Slatyer RO (1967) Plant-water relationships. Academic Press, London

    Google Scholar 

  • Thomas JC, Brown KW, Jourdan RW (1976) Agron J 68: 706–708

    Google Scholar 

  • Wellmann E (1983) In: Encycl Plant Physiol NS, Vol XVI B. Springer, Berlin, pp 745–756

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schopfer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schopfer, P., Brennicke, A. (2010). Stress und Stressresistenz. In: Pflanzenphysiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49880-4_26

Download citation

Publish with us

Policies and ethics