Skip to main content

Trigonometric Fourier Collocation Methods for Multi-frequency Oscillatory Systems

  • Chapter
  • First Online:
Structure-Preserving Algorithms for Oscillatory Differential Equations II
  • 594 Accesses

Abstract

This chapter presents a type of trigonometric Fourier collocation method for solving multi-frequency oscillatory systems \(q^{\prime \prime }(t)+Mq(t)=f\big (q(t)\big )\) with a principal frequency matrix \(M\in \mathbb {R}^{d\times d}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brugnano L, Iavernaro F (2012) Line integral methods which preserve all invariants of conservative problems. J Comput Appl Math 236:3905–3919

    Article  MathSciNet  MATH  Google Scholar 

  2. Brugnano L, Iavernaro F, Trigiante D (2011) A note on the efficient implementation of Hamiltonian BVMs. J Comput Appl Math 236:375–383

    Article  MathSciNet  MATH  Google Scholar 

  3. Brugnano L, Iavernaro F, Trigiante D (2012) A simple framework for the derivation and analysis of effective one-step methods for ODEs. Appl Math Comput 218:8475–8485

    Article  MathSciNet  MATH  Google Scholar 

  4. Brugnano L, Iavernaro F, Trigiante D (2012) Energy and quadratic invariants preserving integrators based upon gauss collocation formulae. SIAM J Numer Anal 50:2897–2916

    Article  MathSciNet  MATH  Google Scholar 

  5. Butler RW, Wood ATA (2002) Laplace approximations for hypergeometric functions with matrix argument. Ann Statist 30:1155–1177

    Article  MathSciNet  MATH  Google Scholar 

  6. Celledoni E, McLachlan RI, Owren B, Quispel GRW (2010) Energy-preserving integrators and the structure of B-series. Found Comput Math 10:673–693

    Article  MathSciNet  MATH  Google Scholar 

  7. Chartier P, Murua A (2007) Preserving first integrals and volume forms of additively split systems. IMA J Numer Anal 27:381–405

    Article  MathSciNet  MATH  Google Scholar 

  8. Cieslinski JL, Ratkiewicz B (2011) Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems. J Phys A: Math Theor 44:155206

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen D (2006) Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems. IMA J Numer Anal 26:34–59

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen D, Hairer E (2011) Linear energy-preserving integrators for Poisson systems. BIT Numer Math 51:91–101

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen D, Hairer E, Lubich C (2005) Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numer Math 45:287–305

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen D, Jahnke T, Lorenz K, Lubich C (2006) Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke A (ed.) Analysis, modeling and simulation of multiscale problems. Springer, Berlin, pp. 553–576

    Google Scholar 

  13. Dahlby M, Owren B, Yaguchi T (2011) Preserving multiple first integrals by discrete gradients. J Phys A: Math Theor 44:305205

    Article  MathSciNet  MATH  Google Scholar 

  14. Franco JM (2002) Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. Comput Phys Commun 147:770–787

    Article  MathSciNet  MATH  Google Scholar 

  15. Franco JM (2006) New methods for oscillatory systems based on ARKN methods. Appl Numer Math 56:1040–1053

    Article  MathSciNet  MATH  Google Scholar 

  16. García A, Martín P, González AB (2002) New methods for oscillatory problems based on classical codes. Appl Numer Math 42:141–157

    Article  MathSciNet  MATH  Google Scholar 

  17. García-Archilla B, Sanz-Serna JM, Skeel RD (1999) Long-time-step methods for oscillatory differential equations. SIAM J Sci Comput 20:930–963

    Article  MathSciNet  MATH  Google Scholar 

  18. Gutiérrez R, Rodriguez J, Sáez AJ (2000) Approximation of hypergeometric functions with matricial argument through their development in series of zonal polynomials. Electron Trans Numer Anal 11:121–130

    MathSciNet  MATH  Google Scholar 

  19. Hairer E (2010) Energy-preserving variant of collocation methods. JNAIAM J Numer Anal Ind. Appl Math 5:73–84

    MathSciNet  Google Scholar 

  20. Hairer E, Lubich C (2000) Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J Numer Anal 38:414–441

    Article  MathSciNet  MATH  Google Scholar 

  21. Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, 2nd edn. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  22. Hairer E, McLachlan RI, Skeel RD (2009) On energy conservation of the simplified Takahashi-Imada method. Math Model Numer Anal 43:631–644

    Article  MathSciNet  MATH  Google Scholar 

  23. Hale JK (1980) Ordinary differential equations. Roberte E. Krieger Publishing company, Huntington, New York

    MATH  Google Scholar 

  24. Hochbruck M, Lubich C (1999) A Gautschi-type method for oscillatory second-order differential equations. Numer Math 83:403–426

    Article  MathSciNet  MATH  Google Scholar 

  25. Hochbruck M, Ostermann A (2005) Explicit exponential Runge-Kutta methods for semilineal parabolic problems. SIAM J Numer Anal 43:1069–1090

    Article  MathSciNet  MATH  Google Scholar 

  26. Hochbruck M, Ostermann A (2010) Exponential integrators. Acta Numer 19:209–286

    Article  MathSciNet  MATH  Google Scholar 

  27. Hochbruck M, Ostermann A, Schweitzer J (2009) Exponential rosenbrock-type methods. SIAM J Numer Anal 47:786–803

    Article  MathSciNet  MATH  Google Scholar 

  28. Iavernaro F, Pace B (2008) Conservative block-boundary value methods for the solution of polynomial hamiltonian systems. AIP Conf Proc 1048:888–891

    Article  MATH  Google Scholar 

  29. Iavernaro F, Trigiante D (2009) High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4:787–101

    MathSciNet  Google Scholar 

  30. Iserles A (2008) A first course in the numerical analysis of differential equations, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  31. Iserles A, Quispel GRW, Tse PSP (2007) B-series methods cannot be volume-preserving. BIT Numer Math 47:351–378

    Article  MathSciNet  MATH  Google Scholar 

  32. Iserles A, Zanna A (2000) Preserving algebraic invariants with Runge-Kutta methods. J Comput Appl Math 125:69–81

    Article  MathSciNet  MATH  Google Scholar 

  33. Koev P, Edelman A (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math Comput 75:833–846

    Article  MathSciNet  MATH  Google Scholar 

  34. Lambert JD, Watson IA (1976) Symmetric multistep methods for periodic initialvalue problems. J Inst Math Appl 18:189–202

    Article  MathSciNet  MATH  Google Scholar 

  35. Leok M, Shingel T (2012) Prolongation-collocation variational integrators. IMA J Numer Anal 32:1194–1216

    Article  MathSciNet  MATH  Google Scholar 

  36. Li J, Wang B, You X, Wu X (2011) Two-step extended RKN methods for oscillatory systems. Comput Phys Commun 182:2486–2507

    Article  MathSciNet  MATH  Google Scholar 

  37. Li J, Wu X (2013) Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer Algo 62:355–381

    Article  MathSciNet  MATH  Google Scholar 

  38. McLachlan RI, Quispel GRW, Tse PSP (2009) Linearization-preserving self-adjoint and symplectic integrators. BIT Numer Math 49:177–197

    Article  MathSciNet  MATH  Google Scholar 

  39. Petkovšek M, Wilf HS, Zeilberger D (1996) A=B. AK Peters Ltd, Wellesley, MA

    MATH  Google Scholar 

  40. Quispel GRW, McLaren DI (2008) A new class of energy-preserving numerical integration methods. J Phys A 41:045206

    Article  MathSciNet  MATH  Google Scholar 

  41. Rainville ED (1960) Special functions. Macmillan, New York

    MATH  Google Scholar 

  42. Reich S (1996) Symplectic integration of constrained Hamiltonian systems by composition methods. SIAM J Numer Anal 33:475–491

    Article  MathSciNet  MATH  Google Scholar 

  43. Reich S (1997) On higher-order semi-explicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. Numer Math 76:231–247

    Article  MathSciNet  MATH  Google Scholar 

  44. Richards DSP (2011) High-dimensional random matrices from the classical matrix groups, and generalized hypergeometric functions of matrix argument. Symmetry 3:600–610

    Article  MathSciNet  Google Scholar 

  45. Sanz-Serna JM (1992) Symplectic integrators for Hamiltonian problems: an overview. Acta Numer 1:243–286

    Article  MathSciNet  MATH  Google Scholar 

  46. Scherr CW, Ivash EV (1963) Associated legendre functions. Am. J. Phys. 31:753

    Article  MathSciNet  MATH  Google Scholar 

  47. Slater LJ (1966) Generalized hypergeometric functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  48. Sun G (1993) Construction of high order symplectic Runge-Kutta methods. J Comput Math 11:250–260

    MathSciNet  MATH  Google Scholar 

  49. Van der Houwen PJ, Sommeijer BP (1987) Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J Numer Anal 24:595–617

    Article  MathSciNet  MATH  Google Scholar 

  50. Van de Vyver H (2006) A fourth-order symplectic exponentially fitted integrator. Comput Phys Commun 174:115–130

    MathSciNet  MATH  Google Scholar 

  51. Wang B, Iserles A, Wu X (2014) Arbitrary order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found Comput Math. doi:10.1007/s10208-014-9241-9

  52. Wang B, Liu K, Wu X (2013) A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J Comput Phys 243:210–223

    Article  MathSciNet  Google Scholar 

  53. Wang B, Wu X (2012) A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys Lett A 376:1185–1190

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang B, Wu X, Zhao H (2013) Novel improved multidimensional Strömer-Verlet formulas with applications to four aspects in scientific computation. Math Comput Modell 57:857–872

    Article  MathSciNet  MATH  Google Scholar 

  55. Wright K (1970) Some relationships between implicit Runge-Kutta, collocation and Lanczos \(\tau \) methods, and their stability properties. BIT Numer Math 10:217–227

    Article  MathSciNet  MATH  Google Scholar 

  56. Wu X, Wang B (2010) Multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems. Comput Phys Commun 181:1955–1962

    Article  MATH  Google Scholar 

  57. Wu X, Wang B, Shi W (2013) Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J Comput Phys 235:587–605

    Article  MathSciNet  MATH  Google Scholar 

  58. Wu X, Wang B, Xia J (2012) Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods. BIT Num Math 52:773–795

    Article  MathSciNet  MATH  Google Scholar 

  59. Wu X, You X, Shi W, Wang B (2010) ERKN integrators for systems of oscillatory second-order differential equations. Comput Phys Commun 181:1873–1887

    Article  MathSciNet  MATH  Google Scholar 

  60. Wu X, You X, Xia J (2009) Order conditions for ARKN methods solving oscillatory systems. Comput Phys Commun 180:2250–2257

    Article  MathSciNet  MATH  Google Scholar 

  61. Wu X, You X, Wang B (2013) Structure-preserving algorithms for oscillatory differential equations. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyuan Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg and Science Press, Beijing, China

About this chapter

Cite this chapter

Wu, X., Liu, K., Shi, W. (2015). Trigonometric Fourier Collocation Methods for Multi-frequency Oscillatory Systems. In: Structure-Preserving Algorithms for Oscillatory Differential Equations II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48156-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48156-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48155-4

  • Online ISBN: 978-3-662-48156-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics