Skip to main content

Resilience of Spatial Networks

  • Chapter
  • First Online:
Complex Systems and Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Critical infrastructures for transmitting materials, electricity and information between distant places, can be represented as spatial networks. The resilience of spatial networks usually shows unprecedented complexity, leading to the catastrophic cascading failures in the network under various local perturbations. From the viewpoint of physics, the cascading failure process of these networks can be considered as a phase transition, which is characterized by threshold and critical exponents. In this chapter, we first review our research on the definition and measurement of the dimension of these spatial networks, which is essential for determining the critical properties of the phase transition in the network failure process according to statistical physics. Secondly, we review our research on the dynamical organization of flow on these spatial networks, which can help to locate the relation between the flow and overload in the cascading failures. Thirdly, we review our research results on the failure propagation behaviors in the cascading failures, showing long-range decay of spatial correlation between component failures. Finally, we review our research on the modeling of self-healing against cascading failures and discuss the challenges in the reliability engineering for evaluating and improving the resilience of spatial networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1), 1–101 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bunde, A., Havlin, S.: Fractals and Disordered Systems. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  3. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  4. Plischke, M., Bergersen, B.: Equilibrium Statistical Physics, World Scientific, Singapore (1994)

    Google Scholar 

  5. Li, D., Kosmidis, K., Bunde, A., Havlin, S.: Dimension of spatially embedded networks. Nat. Phys. 7(6), 481–484 (2011)

    Article  Google Scholar 

  6. Li, D., Li, G., Kosmidis, K., Stanley, H.E., Bunde, A., Havlin, S.: Percolation of spatially constraint networks. EPL (Europhysics Letters) 93(6), 68004 (2011)

    Article  Google Scholar 

  7. Emmerich, T., Bunde, A., Havlin, S., Li, G., Li, D.: Complex networks embedded in space: dimension and scaling relations between mass, topological distance, and Euclidean distance. Phys. Rev. E 87(3), 032802 (2013)

    Article  Google Scholar 

  8. Song, C., Havlin, S., Makse, H.: Self-similarity of complex networks. Nature 433, 392–395 (2005)

    Article  Google Scholar 

  9. Mandelbrot, B.B.: The Fractal Geometry of Nature. Macmillan (1983). ISBN 978-0-7167-1186-5. Retrieved 1 February 2012

    Google Scholar 

  10. Vicsek, T.: Fractal Growth Phenomena, pp. 31; 139–146. World Scientific, Singapore/New Jersey (1992). ISBN 978-981-02-0668-0

    Google Scholar 

  11. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(47–97), (2002)

    Google Scholar 

  12. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(167–256), (2003)

    Google Scholar 

  13. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  14. Weiss, G.H.: Aspects and Applications of the Random Walk. North Holland (1994)

    Google Scholar 

  15. Li, D., Fu, B., Wang, Y., Lu, G., Berezin, Y., Stanley, H.E., Havlin, S.: Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proc. Natl. Acad. Sci. 112(3), 669–672 (2015)

    Article  MATH  Google Scholar 

  16. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4), 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  17. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2001)

    Article  Google Scholar 

  18. Kerner, B.S.: The Physics of Traffic. Springer, Berlin (2004)

    Book  Google Scholar 

  19. Lighthill, M., Whitham, G.: On kinematic waves. I. Flood movement in long rivers. Proc. R. Soc. Lond. A 229(1178), 281–316 (1955)

    Google Scholar 

  20. Prigogine, I., Herman, R.: Kinetic Theory of Vehicular Traffic. Elsevier, New York (1971)

    MATH  Google Scholar 

  21. Newell, G.F.: A simplified theory of kinematic waves in highway traffic, part I: general theory. Transp. Res. Part B 27(4), 281–287 (1993)

    Article  Google Scholar 

  22. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 51(2), 1035–1042 (1995)

    Google Scholar 

  23. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 62(2 Pt A), 1805–1824 (2000)

    Google Scholar 

  24. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2(12), 2221–2229 (1992)

    Google Scholar 

  25. Kerner, B.S.: Experimental features of self-organization in traffic flow. Phys. Rev. Lett. 81, 3797–3800 (1998)

    Article  MATH  Google Scholar 

  26. Helbing, D., Huberman, B.A.: Coherent moving states in highway traffic. Nature 396(6713), 738–740 (1998)

    Article  Google Scholar 

  27. Bollobás, B.: Random Graphs. Academic, London (1985)

    MATH  Google Scholar 

  28. Toroczkai, Z., Bassler, K.E.: Network dynamics: Jamming is limited in scale-free systems. Nature 428, 716 (2004)

    Article  Google Scholar 

  29. Baldick, R., et al.: Initial review of methods for cascading failure analysis in electric power transmission systems IEEE PES CAMS task force on understanding, prediction, mitigation and restoration of cascading failures. In: IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–8. IEEE (2008)

    Google Scholar 

  30. Caldarelli, G., Chessa, A., Pammolli, F., Gabrielli, A., Puliga, M.: Reconstructing a credit network. Nat. Phys. 9, 125–126 (2013)

    Article  Google Scholar 

  31. Helbing, D.: Globally networked risks and how to respond. Nature 497, 51–59 (2013)

    Article  Google Scholar 

  32. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)

    Article  Google Scholar 

  33. Zhao, J.H., Zhou, H.J., Liu, Y.Y.: Inducing effect on the percolation transition in complex networks. Nat. Commun. 4, 2412 (2013)

    Google Scholar 

  34. Radicchi, F., Arenas, A.: Abrupt transition in the structural formation of interconnected networks. Nat. Phys. 9, 717–720 (2013)

    Article  Google Scholar 

  35. Hines, P., Apt, J., Talukdar, S.: Trends in the history of large blackouts in the United States. In: 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–8. IEEE (2008)

    Google Scholar 

  36. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality—an explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Article  MathSciNet  Google Scholar 

  37. Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. 99, 5766–5771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012)

    Article  Google Scholar 

  39. Lorenz, J., Battiston, S., Schweitzer, F.: Systemic risk in a unifying framework for cascading processes on networks. Eur. Phys. J. B 71, 441–460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Araújo, N.A., Andrade, J.S., Ziff, R.M., Herrmann, H.J.: Tricritical point in explosive percolation. Phys. Rev. Lett. 106, 095703 (2011)

    Google Scholar 

  41. Li, D., Jiang, Y., Kang, R., Havlin, S.: Spatial correlation analysis of cascading failures: congestions and blackouts. Sci. Rep. 4 (2014)

    Google Scholar 

  42. Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. Lett. 66, 065102 (2002)

    Google Scholar 

  43. Cohen, R., et al.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000)

    Article  Google Scholar 

  44. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Breakdown of the Internet under intentional attack. Phys. Rev. Lett. 86(16), 3682 (2001)

    Article  Google Scholar 

  45. Neumayer, S., et al.: Assessing the impact of geographically correlated network failures. Paper Presented at Military Communications Conference, San Diego (2008). doi:10.1109/MILCOM.2008.4753111

  46. Berezin, Y., Bashan, A., Danziger, M.M., Li, D., Havlin, S.: Localized attacks on spatially embedded networks with dependencies. Sci. Rep. 5 (2015)

    Google Scholar 

  47. Kröger, W., Zio, E.: Vulnerable Systems. Springer, London (2011)

    Book  Google Scholar 

  48. Bashan, A., Parshani, R., Havlin, S.: Percolation in networks composed of connectivity and dependency links. Phys. Rev. E 83, 051127 (2011)

    Article  Google Scholar 

  49. Parshani, R., Buldyrev, S.V., Havlin, S.: Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105, 048701 (2010)

    Article  Google Scholar 

  50. Cohen, R., Havlin, S.: Complex Networks: Structure, Robustness and Function. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  51. Carreras, B.A., Newman, D.E., Dobson, I., Poole, A.B.: Evidence for self-organized criticality in a time series of electric power system blackouts. IEEE Trans. Circuits Syst. I: Regul. Pap. 51(9), 1733–1740 (2004)

    Article  Google Scholar 

  52. Liu, C., Li, D., Fu, B., Yang, S., Wang, Y., Lu, G.: Modeling of self-healing against cascading overload failures in complex networks. EPL (Europhysics Letters) 107(6), 68003 (2014)

    Article  Google Scholar 

  53. Mingjun, W.: Self healing grid and distributed energy resource. Power Syst. Technol. Beijing 31(6), 1 (2007)

    Google Scholar 

  54. Wu, D.Y., Meure, S., Solomon, D.: Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci. 33(5), 479–522 (2008)

    Article  Google Scholar 

  55. Sylvester, D., Blaauw, D., Karl, E.: Elastic: An adaptive self-healing architecture for unpredictable silicon. IEEE Des. Test Comput. 23(6), 484–490 (2006)

    Article  Google Scholar 

  56. Li, H., Rosenwald, G.W., Jung, J., Liu, C.C.: Strategic power infrastructure defense. Proc. IEEE 93(5), 918–933 (2005)

    Article  Google Scholar 

  57. Ming, L., Guangyu, H., Chen, S.: Brief introduction to the IECSA project. Autom. Electr. Power Syst. 30(13), 99–104 (2006) (in Chinese)

    Google Scholar 

  58. Liu, C., Li, D., Zio, E., Kang, R.: A modeling framework for system restoration from cascading failures. PLoS ONE 9(12), e112363 (2014)

    Article  Google Scholar 

  59. Zio, E., Sansavini, G.: Modeling failure cascades in networks systems due to distributed random disturbances and targeted intentional attacks. In: Proceeding of the European Safety and Reliability Conference (2008)

    Google Scholar 

  60. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  61. Elsayed, E.A.: Reliability Engineering, vol. 88. Wiley (2012)

    Google Scholar 

  62. Wilkov, R.: Analysis and design of reliable computer networks. IEEE Trans. Commun. 20(3), 660–678 (1972)

    Article  Google Scholar 

  63. Wilson, J.M.: An improved minimizing algorithm for sum of disjoint products [reliability theory]. IEEE Trans. Reliab. 39(1), 42–45 (1990)

    Article  MATH  Google Scholar 

  64. Wood, R.K.: Factoring algorithms for computing K-terminal network reliability. IEEE Trans. Reliab. 35(3), 269–278 (1986)

    Article  MATH  Google Scholar 

  65. Lin, Y., Li, D., Liu, C., Kang, R.: Framework design for reliability engineering of complex systems. In: IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), June 2014, pp. 19–24. IEEE (2014)

    Google Scholar 

  66. The IEEE 14 BUS data can be found on: http://www.ee.washington.edu/research/pstca/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, D. (2016). Resilience of Spatial Networks. In: Lü, J., Yu, X., Chen, G., Yu, W. (eds) Complex Systems and Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47824-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47824-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47823-3

  • Online ISBN: 978-3-662-47824-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics