Skip to main content

Epidemiological Modeling on Complex Networks

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The present chapter is devoted to review some literatures on the modeling infectious disease on complex networks. From the following several aspects we give a brief summary about solving the problem of the disease spread: Modeling approaches of epidemic dynamics on complex networks, Application of percolation theory in propagation dynamics, Epidemic models in complex network with demographics and Epidemic spreading on multilayer networks. In the first section, the Node-based and Edge-based mean-field modeling approaches on complex networks are reviewed and compared respectively, and the second section reviews the application of bond percolation in the single network (undirected graphs, directed graphs, bipartite graphs and clustered networks) and coupled networks (overlap networks and interconnected networks), then gives a review about the disease epidemics and site or bond percolation or both site and bond percolation in small-world networks. Following, we present an overview on some of recent studies on epidemic dynamics with demographics and epidemic processes on multilayer networks in the last two section, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1991)

    Google Scholar 

  2. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)

    Article  Google Scholar 

  3. Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics in finite size scale-free networks. Phys. Rev. E 65(3), 035108 (2002)

    Article  Google Scholar 

  4. Boguná, M., Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66(4), 047104 (2002)

    Article  Google Scholar 

  5. Boguná, M., Pastor-Satorras, R., Vespignani, A.: Absence of epidemic threshold in scale-free networks with degree correlations. Phys. Rev. Lett. 90(2), 028701 (2003)

    Article  Google Scholar 

  6. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)

    Article  Google Scholar 

  7. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  8. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, L., Dai, G.Z.: Global stability of virus spreading in complex heterogeneous networks. SIAM J. Appl. Math. 68(5), 1495–1502 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 26(4), 521–529 (2002)

    Google Scholar 

  11. Wang, J., Liu, Z.: Mean-field level analysis of epidemics in directed networks. J. Phys. A: Math. Theor. 42(35), 355001 (2009)

    Article  Google Scholar 

  12. Meyers, L.A., Newman, M.E.J., Pourbohloul, B.: Predicting epidemics on directed contact networks. J. Theor. Biol. 240(3), 400–418 (2006)

    Article  MathSciNet  Google Scholar 

  13. Zhang, X., Sun, G.Q., Zhu, Y.X., et al.: Epidemic dynamics on semi-directed complex networks. Math. Biosci. 246(2), 242–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, L., Li, X.: Spatial epidemiology of networked metapopulation: an overview. Chin. Sci. Bull. 59(28), 3511–3522 (2014)

    Article  Google Scholar 

  15. Boguñá, M., Castellano, C., Pastor-Satorras, R.: Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks. Phys. Rev. Lett. 111(6), 068701 (2013)

    Article  Google Scholar 

  16. Zhang, J., Jin, Z., Chen, Y.: Analysis of sexually transmitted disease spreading in heterosexual and homosexual populations. Math. Biosci. 242(2), 143–152 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, Y., Jin, Z., Yang, Z., et al.: Global analysis of an SIS model with an infective vector on complex networks. Nonlinear Anal.: Real World Appl. 13(2), 543–557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kiss, I.Z., Green, D.M., Kao, R.R.: The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. Math. Biosci. 203(1), 124–136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lindquist, J., Ma, J., Van den Driessche, P., et al.: Effective degree network disease models. J. Math. Biol. 62(2), 143–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jin, Z., Sun, G., Zhu, H.: Epidemic models for complex networks with demographics. Math. Biosci. Eng. 11(6), 1295–1317 (2014)

    Article  MathSciNet  Google Scholar 

  21. Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266(1421), 859–867 (1999)

    Article  Google Scholar 

  22. Miller, J.C., Kiss, I.Z.: Epidemic spread in networks: existing methods and current challenges. Math. Model. Nat. Phenom. 9(2), 4 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation models for childhood epidemics. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 264(1385), 1149–1156 (1997)

    Article  MATH  Google Scholar 

  24. Sharkey, K.J., Fernandez, C., Morgan, K.L., et al.: Pair-level approximations to the spatio-temporal dynamics of epidemics on asymmetric contact networks. J. Math. Biol. 53(1), 61–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eames, K.T.D.: Modelling disease spread through random and regular contacts in clustered populations. Theor. Popul. Biol. 73(1), 104–111 (2008)

    Article  MATH  Google Scholar 

  26. Taylor, M., Simon, P.L., Green, D.M., et al.: From Markovian to pairwise epidemic models and the performance of moment closure approximations. J. Math. Biol. 64(6), 1021–1042 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96(20), 208701 (2006)

    Article  Google Scholar 

  28. Eames, K.T.D., Keeling, M.J.: Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. 99(20), 13330–13335 (2002)

    Article  Google Scholar 

  29. Eames, K.T.D., Keeling, M.J.: Monogamous networks and the spread of sexually transmitted diseases. Math. Biosci. 189(2), 115–130 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. House, T., Keeling, M.J.: Insights from unifying modern approximations to infections on networks. J. R. Soc. Interface rsif20100179 (2010)

    Google Scholar 

  31. Simon, P.L., Kiss, I.Z.: Super compact pairwise model for SIS epidemic on heterogeneous networks (2015). arXiv:1503.01090

    Google Scholar 

  32. Volz, E.: SIR dynamics in random networks with heterogeneous connectivity. J. Math. Biol. 56(3), 293–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Miller, J.C.: A note on a paper by Erik Volz: SIR dynamics in random networks. J. Math. Biol. 62(3), 349–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Miller, J.C., Slim, A.C., Volz, E.M.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface 9(70), rsif20110403 (2012)

    Google Scholar 

  35. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  36. Newman, M.E.J.: Properties of highly clustered networks. Phys. Rev. E 68(2), 026121 (2003)

    Article  Google Scholar 

  37. Gleeson, J.P., Melnik, S., Hackett, A.: How clustering affects the bond percolation threshold in complex networks. Phys. Rev. E 81(6), 066114 (2010)

    Article  MathSciNet  Google Scholar 

  38. Miller, J.C.: Spread of infectious disease through clustered populations. J. R. Soc. Interface, 2009 rsif.0524 (2008)

    Google Scholar 

  39. Miller, J.C.: Percolation and epidemics in random clustered networks. Phys. Rev. E 80(2), 020901 (2009)

    Article  MathSciNet  Google Scholar 

  40. Coupechoux, E., Lelarge, M.: How clustering affects epidemics in random networks. Adv. Appl. Probab. 46(4), 985–1008 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Newman, M.E.J.: Random graphs with clustering. Phys. Rev. Lett. 103(5), 058701 (2009)

    Article  Google Scholar 

  42. Karrer, B., Newman, M.E.J.: Random graphs containing arbitrary distributions of subgraphs. Phys. Rev. E 82(6), 066118 (2010)

    Article  MathSciNet  Google Scholar 

  43. Wang, B., Cao, L., Suzuki, H., et al.: Impacts of clustering on interacting epidemics. J. Theor. Biol. 304, 121–130 (2012)

    Article  MathSciNet  Google Scholar 

  44. Boccaletti, S., Bianconi, G., Criado, R., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)

    Article  MathSciNet  Google Scholar 

  45. Newman, M.E.J.: Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95(10), 108701 (2005)

    Article  Google Scholar 

  46. Funk, S., Jansen, V.A.A.: Interacting epidemics on overlay networks. Phys. Rev. E 81(3), 036118 (2010)

    Article  Google Scholar 

  47. Allard, A., Noël, P.A., Dubé, L.J., et al.: Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics. Phys. Rev. E 79(3), 036113 (2009)

    Article  Google Scholar 

  48. Gandolfi, A.: Percolation Methods for SEIR Epidemics on Graphs. Dynamic Models of Infectious Diseases, pp. 31–58. Springer, New York (2013)

    Book  Google Scholar 

  49. Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E 61(5), 5678 (2000)

    Article  Google Scholar 

  50. Liu, J., Tang, Y., Yang, Z.R.: The spread of disease with birth and death on networks. J. Stat. Mech.: Theory Exp. (08), P08008 (2004)

    Google Scholar 

  51. Zhang, J., Jin, Z.: The analysis of an epidemic model on networks. Appl. Math. Comput. 217(17), 7053–7064 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Moore, C., Ghoshal, G., Newman, M.E.J.: Exact solutions for models of evolving networks with addition and deletion of nodes. Phys. Rev. E 74(3), 036121 (2006)

    Article  MathSciNet  Google Scholar 

  53. Volz, E., Meyers, L.A.: Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B: Biol. Sci. 274(1628), 2925–2934 (2007)

    Article  Google Scholar 

  54. Kamp, C.: Untangling the interplay between epidemic spread and transmission network dynamics. PLoS Comput. Biol. 6(11), e1000984 (2010)

    Article  MathSciNet  Google Scholar 

  55. Piccardi, C., Colombo, A., Casagrandi, R.: Connectivity interplays with age in shaping contagion over networks with vital dynamics. Phys. Rev. E 91(2), 022809 (2015)

    Article  Google Scholar 

  56. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., et al.: Epidemic processes in complex networks (2014). arXiv:1408.2701

  57. D’Agostino, G., Scala, A. (eds.): Network of Networks: The Frontier of Complexity. Springer International Publishing, Switzerland (2014). doi:10.1007/978-3-319-03518-5

    Google Scholar 

  58. Kurant, M., Thiran, P.: Layered complex networks. Phys. Rev. Lett. 96, 138701 (2006)

    Google Scholar 

  59. De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)

    MATH  Google Scholar 

  60. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y.: Multilayer networks. J. Complex Netw. 2, 203–271 (2014)

    Article  Google Scholar 

  61. Sahneh, F.D., Scoglio, C.: Competitive epidemic spreading over arbitrary multilayer networks. Phys. Rev. E 89, 062817 (2014)

    Article  Google Scholar 

  62. Min, Y., Hu, J., Wang, W., Ge, Y., Chang, J., Jin, X.: Diversity of multilayer networks and its impact on collaborating epidemics. Phys. Rev. E 90, 062803 (2014)

    Article  Google Scholar 

  63. Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011)

    Article  Google Scholar 

  64. Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012)

    Article  Google Scholar 

  65. Gao, J., Buldyrev, S.V., Stanley, H.E., Xu, X., Havlin, S.: Percolation of a general network of networks. Phys. Rev. E 88, 062816 (2013)

    Article  Google Scholar 

  66. Bianconi, G., Dorogovtsev, S.N.: Multiple percolation transitions in a configuration model of a network of networks. Phys. Rev. E 89, 062814 (2014)

    Google Scholar 

  67. Buldyrev, S., Parshani, R., Paul, G., Stanley, H., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)

    Article  Google Scholar 

  68. Dickison, M., Havlin, S., Stanley, H.E.: Epidemics on interconnected networks. Phys. Rev. E 85, 066109 (2012)

    Article  Google Scholar 

  69. Zhou, D., Stanley, H.E., D’Agostino, G., Scala, A.: Assortativity decreases the robustness of interdependent networks. Phys. Rev. E 86, 066103 (2012)

    Article  Google Scholar 

  70. Leicht, E.A., D’Souza, R.M.: Percolation on interacting networks (2009). arXiv:0907.0894

  71. Donges, J.F., Schultz, H.C.H., Marwan, N., Zou, Y., Kurths, J.: Investigating the topology of interacting networks. Eur. Phys. J. B 84(4), 635–651 (2011)

    Google Scholar 

  72. Radicchi, F.: Driving interconnected networks to supercriticality. Phys. Rev. X 4, 021014 (2014)

    Google Scholar 

  73. Lee, K.M., Goh, K.I., Kim, I.M.: Sandpiles on multiplex networks. J. Korean Phys. Soc. 60(4), 641–647 (2012)

    Article  Google Scholar 

  74. Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014)

    Article  Google Scholar 

  75. Lee, K.M., Min, B., Goh, K.: Towards real-world complexity: an introduction to multiplex networks. Eur. Phys. J. B 88, 48 (2015)

    Article  Google Scholar 

  76. Saumell-Mendiola, A., Serrano, M., Boguñá, M.: Epidemic spreading on interconnected networks. Phys. Rev. E 86, 026106 (2012)

    Article  Google Scholar 

  77. Wang, H., Li, Q., D’Agostino, G., Havlin, S., Stanley, H.E., Van Mieghem, P.: Effect of the interconnected network structure on the epidemic threshold. Phys. Rev. E 88, 022801 (2013)

    Google Scholar 

  78. Granell, C., Gómez, S., Arenas, A.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013)

    Article  Google Scholar 

  79. Granell, C., Gómez, S., Arenas, A.: Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E 90, 012808 (2014)

    Article  Google Scholar 

  80. Massaro, E., Bagnoli, F.: Epidemic spreading and risk perception in multiplex networks: a self-organized percolation method. Phys. Rev. E 90, 052817 (2014)

    Article  Google Scholar 

  81. Guo, Q., Jiang, X., Lei, Y., Li, M., Ma, Y., Zheng, Z.: Two-stage effects of awareness cascade on epidemic spreading in multiplex networks. Phys. Rev. E 91, 012822 (2015)

    Article  Google Scholar 

  82. Shai, S., Dobson, S.: Coupled adaptive complex networks. Phys. Rev. E 87, 042812 (2013)

    Article  Google Scholar 

  83. Peng, X.L., Small, M., Xu, X.J., Fu, X.: Temporal prediction of epidemic patterns in community networks. New J. Phys. 15, 113033 (2013)

    Article  Google Scholar 

  84. Newman, M.E.J.: Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95, 108701 (2005)

    Article  Google Scholar 

  85. Marceau, V., No\(\tilde{{\text{ e }}}\)l, P.-A., Hébert-Dufresne, L., Allard, A., Dubé, L.J.: Modelling the dynamical interaction between epidemics on overlay networks. Phys. Rev. E 84, 026105 (2011)

    Google Scholar 

  86. Sahneh, F.D., Scoglio, C.: May the best meme win!: new exploration of competitive epidemic spreading over arbitrary multi-layer networks (2013). arXiv:1308.4880

  87. Wei, X., Valler, N., Prakash, B.A., Neamtiu, I., Faloutsos, M., Faloutsos, C.: Competing memes propagation on networks: a network science perspective. IEEE J. Sel. Areas Commun. 31(6), 1049–1060 (2013)

    Article  Google Scholar 

  88. Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C.J., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013)

    Article  Google Scholar 

  89. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jin, Z., Li, S., Zhang, X., Zhang, J., Peng, XL. (2016). Epidemiological Modeling on Complex Networks. In: Lü, J., Yu, X., Chen, G., Yu, W. (eds) Complex Systems and Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47824-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47824-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47823-3

  • Online ISBN: 978-3-662-47824-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics