Skip to main content

Towards Structural Controllability of Temporal Complex Networks

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Temporal complex networks are ubiquitous in human daily life whose topologies evolve with time, such as communication networks and transportation networks. Investigations on the structural controllability of temporal complex networks show the properties and performances of controllability when the weights of edges in temporal networks are arbitrary values rather than exact ones. There are two frameworks proposed in this chapter to analyze the structural controllability of temporal networks. In the first framework, a temporal network is treated as a sequence of characteristic subgraphs with different characteristic time stamps. After finding the maximum characteristic subgraph set from these subgraphs, priority maximum methods are applied to improve the controlling efficiency by which temporal information of the network remains. On the other hand, in the later framework, a temporal network is represented by time-ordered graph (TOG). Instead of calculating the rank of controllability matrix directly, finding and classifying temporal trees of the time-ordered graph provides an effective way to estimate the controlling centrality of a node in the network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barabási, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207–211 (2005)

    Article  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bascompte, J.: Disentangling the web of life. Science 325(5939), 416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berners-Lee, T., Hall, W., Hendler, J., et al.: Creating a science of the web. Science 313(5788), 769–771 (2006)

    Article  Google Scholar 

  5. Chapman, A., Mesbahi, M.: On strong structural controllability of networked systems: a constrained matching approach. In: Proceedings of the IEEE Conference American Control Conference, pp. 6126–6131 (2013)

    Google Scholar 

  6. Chapman, A., Nabi-Abdolyousefi, M., Mesbahi, M.: Controllability and observability of network-of-networks via Cartesian products. IEEE Trans. Autom. Control 59(10), 2668–2679 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chen, G.: Pinning control and synchronization on complex dynamical networks. Int. J. Control Autom. 12(2), 221–230 (2014)

    Article  Google Scholar 

  8. Commault, C., Dion, J.M.: Input addition and leader selection for the controllability of graph-based systems. Automatica 49(11), 3322–3328 (2013)

    Article  MathSciNet  Google Scholar 

  9. Cornelius, S.P., Kath, W.L., Motter, A.E.: Realistic control of network dynamics. Nat. Commun. 4, 1942 (2013)

    Article  Google Scholar 

  10. Cowan, N.J., Chastain, E.J., Vilhena, D.A., Freudenberg, J.S., Bergstrom, C.T.: Nodal dynamics, not degree distributions, determine the structural controllability of complex networks. PloS ONE 7(6), e38398 (2012)

    Article  Google Scholar 

  11. Dodds, P.S., Muhamad, R., Watts, D.J.: An experimental study of search in global social networks. Science 301(5634), 827–829 (2003)

    Article  Google Scholar 

  12. Eckmann, J.P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. USA 101(40), 14333–14337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debr. 6, 290–297 (1959)

    Google Scholar 

  14. Estradam, E., Hatano, N., Benzi, M.: The physics of communicability in complex networks. Phys. Rep. 514(3), 89–119 (2012)

    Article  MathSciNet  Google Scholar 

  15. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)

    Google Scholar 

  16. Grindrod, P., Parsons, M.C., Higham, D.J., Estrada, E.: Communicability across evolving networks. Phys. Rev. E 83(4), 046120 (2011)

    Article  Google Scholar 

  17. Gutièrrez, R., Sendiña-Nadal, I., Zanin, M., Papo, D., Boccaletti, S.: Targeting the dynamics of complex networks. Sci. Rep. 2, 396 (2012)

    Article  Google Scholar 

  18. Holme, P.: Network dynamics of ongoing social relationships. Europhys. Lett. 64(3), 427 (2003)

    Article  Google Scholar 

  19. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  20. Hopcroft, J.E., Karp, R.M.: An \({{\rm n}}^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  Google Scholar 

  21. Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 101(42), 15124–15129 (2004)

    Article  Google Scholar 

  22. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

    Article  Google Scholar 

  23. Jarczyk, J.C., Svaricek, F., Alt, B.: Strong structural controllability of linear systems revisited. In: Proceedings of the Conference CDC-ECE, pp. 1213–1218 (2011)

    Google Scholar 

  24. Jia, T., Barabási, A.L.: Control capacity and a random sampling method in exploring controllability of complex networks. Sci. Rep. 3, 2354 (2013)

    Article  Google Scholar 

  25. Jia, T., Liu, Y.Y., Csóka, E., et al.: Emergence of bimodality in controlling complex networks. Nat. Commun. 4, 2002 (2013)

    Article  Google Scholar 

  26. Kalman, R.E.: Mathematical description of linear dynamical systems. J. Soc. Ind. Appl. Math. Ser. A 1(2), 152–192 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karsai, M., Kaski, K., Kertész, J.: Correlated dynamics in egocentric communication networks. Plos ONE 7(7), e40612 (2012)

    Article  Google Scholar 

  28. Kim, H., Anderson, R.: Temporal node centrality in complex networks. Phys. Rev. E 85(2), 026107 (2012)

    Article  Google Scholar 

  29. Kostakos, V.: Temporal graphs. Phys. A 388(6), 1007–1023 (2009)

    Article  MathSciNet  Google Scholar 

  30. Krings, G., Karsai, M., Bernhardsson, S., et al.: Effects of time window size and placement on the structure of an aggregated communication network. EPJ Data Sci. 1(1), 1–16 (2012)

    Article  Google Scholar 

  31. Lee, S., Rocha, L.E., Liljeros, F., Holme, P.: Exploiting temporal network structures of human interaction to effectively immunize populations. PloS ONE 7(5), e36439 (2012)

    Article  Google Scholar 

  32. Li, X., Rao, P.C.: Synchronizing a weighted and weakly-connected kuramoto oscillator digraph with a pacemaker. IEEE Trans. Circuit Syst. I: Regul. Pap. 62(3), 899–905 (2015)

    Article  MathSciNet  Google Scholar 

  33. Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuit Syst. I: Regul. Pap. 51(10), 2074–2087 (2004)

    Article  MathSciNet  Google Scholar 

  34. Lin, C.T.: Structural controllability. IEEE Trans. Autom. Control 19(3), 201–208 (1974)

    Article  MATH  Google Scholar 

  35. Liu, X., Lin, H., Chen, B.M.: Structural controllability of switched linear systems. Automatica 49(12), 3531–3537 (2013)

    Article  MathSciNet  Google Scholar 

  36. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167–173 (2011)

    Article  Google Scholar 

  37. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Control centrality and hierarchical structure in complex networks. Plos ONE 7(9), e44459 (2012)

    Article  Google Scholar 

  38. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Observability of complex systems. Proc. Natl. Acad. Sci. USA 110(7), 2460–2465 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lombardi, A., Hörnquist, M.: Controllability analysis of networks. Phys. Rev. E 75(5), 056110 (2007)

    Article  Google Scholar 

  40. Lu, W., Li, X., Rong, Z.: Global stabilization of complex networks with digraph topologies via a local pinning algorithm. Automatica 46(1), 116–121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Luenberger, D.G.: Introduction to Dynamic Systems: Theory, Models, & Applications. Wiley, New York (1979)

    Google Scholar 

  42. Mayeda, H., Yamada, T.: Strong structural controllability. SIAM J. Control Optim. 17(1), 123–138 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, Princeton (2010)

    Google Scholar 

  44. Menichetti, G., Dall’Asta, L., Bianconi, G.: Network controllability is determined by the density of low in-degree and out-degree nodes. Phys. Rev. Lett. 113(7), 078701 (2014)

    Article  Google Scholar 

  45. Milgram, S.: The small world problem. Psychol. Today 2(1), 60–67 (1967)

    MathSciNet  Google Scholar 

  46. Nepusz, T., Vicsek, T.: Controlling edge dynamics in complex networks. Nat. Phys. 8(7), 568–573 (2012)

    Article  Google Scholar 

  47. Nicosia, V., Tang, J., Musolesi, M., et al.: Components in time-varying graphs. Chaos 22(2), 023101 (2012)

    Article  MATH  Google Scholar 

  48. Pan, Y., Li, X., Zhan, J.: On the priority maximum matching of structural controllability of temporal networks. In: Proceedings of the 32nd IEEE Conference Chinese Control Conference, pp. 1164–1169 (2013)

    Google Scholar 

  49. Pan, Y., Li, X.: Towards a graphic tool of structural controllability of temporal networks. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1784–1787 (2014)

    Google Scholar 

  50. Pan, Y., Li, X.: Structural controllability and controlling centrality of temporal networks. PloS ONE 9(4), e94998 (2014)

    Article  Google Scholar 

  51. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  52. Perra, N., Baronchelli, A., Mocanu, D., et al.: Random walks and search in time-varying networks. Phys. Rev. Lett. 109(23), 238701 (2012)

    Article  Google Scholar 

  53. Perra, N., Gonçalves, B., Pastor-Satorras, R., et al.: Activity driven modeling of time varying networks. Sci. Rep. 2, 469 (2012)

    Article  Google Scholar 

  54. Reinschke, K.J., Svaricek, F., Wend, H.D.: On strong structural controllability of linear systems. In: Proceedings of the 31st IEEE Conference on Decision and Control, pp. 203–208 (1992)

    Google Scholar 

  55. Ribeiro, B., Perra, N., Baronchelli, A.: Quantifying the effect of temporal resolution on time-varying networks. Sci. Rep. 3, 3006 (2013)

    Article  Google Scholar 

  56. Ruths, J., Ruths, D.: Control profiles of complex networks. Science 343(6177), 1373–1376 (2014)

    Article  MathSciNet  Google Scholar 

  57. Schweitzer, F., Fagiolo, G., Sornette, D., et al.: Economic networks: The new challenges. Science 325(5939), 422–425 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Sorrentino, F., di Bernardo, M., Garofalo, F., Chen, G.: Controllability of complex networks via pinning. Phys. Rev. E 75(4), 046103 (2007)

    Article  Google Scholar 

  59. Su, H., Wang, X., Lin, Z.: Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control 54(2), 293–307 (2009)

    Article  MathSciNet  Google Scholar 

  60. Su, H., Wang, X.: Pinning Control of Complex Networked Systems. Springer, Berlin (2013)

    Google Scholar 

  61. Sun, J., Motter, A.E.: Controllability transition and nonlocality in network control. Phys. Rev. Lett. 110(20), 208701 (2013)

    Article  Google Scholar 

  62. Tang, J., Scellato, S., Musolesi, M., et al.: Small-world behavior in time-varying graphs. Phys. Rev. E 81(5), 055101 (2010)

    Article  Google Scholar 

  63. Wang, B., Gao, L., Gao, Y.: Control range: a controllability-based index for node significance in directed networks. J. Stat. Mech. Theory 2012(04), P04011 (2012)

    Google Scholar 

  64. Wang, B., Gao, L., Gao, Y., Deng, Y.: Maintain the structural controllability under malicious attacks on directed networks. Europhys. Lett. 101(5), 58003 (2013)

    Article  Google Scholar 

  65. Wang, X.F., Chen, G.: Pinning control of scale-free dynamical networks. Phys. A 310(3), 521–531 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  66. Wang, X.F., Li, X., Chen, G.R.: Network Science: An Introduction. Higher Education Press, Beijing (2012)

    Google Scholar 

  67. Wang, X., Li, X., Lu, J.: Control and flocking of networked systems via pinning. IEEE Circuits Syst. Mag. 10(3), 83–91 (2010)

    Article  Google Scholar 

  68. Wang, W.X., Ni, X., Lai, Y.C., Grebogi, C.: Optimizing controllability of complex networks by minimum structural perturbations. Phys. Rev. E 85(2), 026115 (2012)

    Article  Google Scholar 

  69. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  70. Wu, Y., Zhou, C., Xiao, J., Kurths, J., Schellnhuber, H.J.: Evidence for a bimodal distribution in human communication. Proc. Natl. Acad. Sci. USA 107(44), 18803–18808 (2010)

    Article  Google Scholar 

  71. Vidal, M., Cusick, M.E., Barabási, A.L.: Interactome networks and human disease. Cell 144(6), 986–998 (2011)

    Article  Google Scholar 

  72. Yan, G., Ren, J., Lai, Y.C., Lai, C.H., Li, B.: Controlling complex networks: how much energy is needed. Phys. Rev. Lett. 108(21), 218703 (2012)

    Article  Google Scholar 

  73. Yao, P., Li, X.: On structural controllability of complex networks using polar placement. In: Proceedings of the 33rd IEEE Conference on Chinese Control Conference, pp. 2783–2788 (2014)

    Google Scholar 

  74. Yao, P., Li, X.: Structural controllability of temporal networks with single switching controller (unpublished)

    Google Scholar 

  75. Yuan, Z., Zhao, C., Di, Z., Wang, W.X., Lai, Y.C.: Exact controllability of complex networks. Nat. Commun. 4, 2247 (2013)

    Google Scholar 

  76. Zhan, J., Li, X.: Consensus of sampled-data multi-agent networking systems via model predictive control. Automatica 49(8), 2502–2507 (2013)

    Article  MathSciNet  Google Scholar 

  77. Zhan, J., Li, X.: Flocking of multi-agent systems via model predictive control based on position-only measurements. IEEE Trans. Ind. Inf. 9(1), 377–385 (2013)

    Article  Google Scholar 

  78. Zhang, Y.Q., Li, X.: Characterizing large-scale population’s indoor spatio-temporal interactive behaviors. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, pp. 25–32 (2012)

    Google Scholar 

  79. Zhang, Y.Q., Li, X.: Temporal dynamics and impact of event interactions in cyber-social populations. Chaos 23(1), 01313 (2013)

    Article  Google Scholar 

  80. Zhang, Y.Q., Li, X.: When susceptible-infectious-susceptible contagion meets time-varying networks with identical infectivity. Europhys. Lett. 108(2), 28006 (2014)

    Article  Google Scholar 

  81. Zhang, Y.Q., Li, X., Xu, J., Vaslakos, A.V.: Human interactive patterns in temporal networks. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 214–222 (2015)

    Article  Google Scholar 

  82. Zhang, Y., Wang, L., Zhang, Y.Q., Li, X.: Towards a temporal network analysis of interactive WiFi users. Europhys. Lett. 98(6), 68002 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by National Science Foundation for Distinguished Young Scholar of China (No. 61425019), National Natural Science Foundation (No. 61273223), the Research Fund for the Doctoral Program of Higher Education (No. 20120071110029) of China, the Key Project of National Social Science Fund of China (No. 12&ZD18), and Shanghai SMEC-EDF Shuguang Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, X., Yao, P., Pan, Y. (2016). Towards Structural Controllability of Temporal Complex Networks. In: Lü, J., Yu, X., Chen, G., Yu, W. (eds) Complex Systems and Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47824-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47824-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47823-3

  • Online ISBN: 978-3-662-47824-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics