Skip to main content

Dichte Bildzuordnung

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbuch der Geodäsie

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 355 Accesses

Zusammenfassung

Das Ziel der dichten Bildzuordnung ist es, möglichst für jedes Pixel eines Bildes das Pixel in einem anderen Bild zu finden, das dem gleichen Punkt in der Szene entspricht. Dieses Problem ist zwar im Allgemeinen nicht eindeutig lösbar, im Laufe der Zeit wurde jedoch eine Vielzahl von Verfahren entwickelt, die gute Ergebnisse liefern. Dieses Kapitel beleuchtet Vergleichsmaße und darauf beruhende lokale, globale und semi-globale Verfahren und diskutiert deren Vor- und Nachteile. Weiterhin werden Hinweise zur Nachverarbeitung und Rekonstruktion aus Bildern gegeben und mögliche Anwendungen aufgezeigt.

Dieser Beitrag ist Teil des Handbuchs der Geodäsie, Band „Photogrammetrie und Fernerkundung“, herausgegeben von Christian Heipke, Hannover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Die äußere Orientierung wird auch Pose genannt. Fehlt der Maßstab spricht man auch von relativer Orientierung.

  2. 2.

    Das mittlere „s“ steht für das englische Wort squared.

  3. 3.

    Zero-mean normalized cross correlation.

  4. 4.

    Ein Maximum bei ZNCC oder Mutual Information.

  5. 5.

    Manche globale Methoden benutzten auch Fenster, aber diese sind dann sehr klein.

Literatur

  1. Banz, C., Hesselbarth, S., Flatt, H., Blume, H., Pirsch, P.: Real-time stereo vision system using semi-global matching disparity estimation: architecture and FPGA-implementation. In: IEEE Conference on Embedded Computer Systems: Architectures, Modeling and Simulation, Samos (2010)

    Google Scholar 

  2. Banz, C., Blume, H., Pirsch, P.: Real-time semi-global matching disparity estimation on the GPU. In: Workshop on GPU in Computer Vision Applications at the International Conference on Computer Vision, Bordeaux, S. 514–521 (2011)

    Google Scholar 

  3. Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int. J. Comput. Vis. 19(1), 57–91 (1996)

    Article  Google Scholar 

  4. Bleyer, M., Rhemann, C., Rother, C.: PatchMatch stereo – stereo matching with slanted support windows. In: British Machine Vision Conference, Dundee (2011)

    Book  Google Scholar 

  5. Bobick, A.F., Intille, S.S.: Large occlusion stereo. Int. J. Comput. Vis. 33(3), 181–200 (1999)

    Article  Google Scholar 

  6. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  7. Boykov, Y., Veksler O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  8. Drory, A., Haubold, C., Avidan, S., Hamprecht, F.A.: Semi-global matching: a principle derivation in terms of message passing. In: German Conference on Pattern Recognition, Münster (2014)

    Google Scholar 

  9. Egnal, C.: Mutual information as a stereo correspondence. Technischer Bericht der University of Pennsylvania, Computer and Information Science, MS-CIS-00-20, Philadelphia (2000)

    Google Scholar 

  10. Ernst, I., Hirschmüller, H.: Mutual information based semi-global stereo matching on the GPU. In: International Symposium on Visual Computing, Las Vegas. LNCS 5358, Part 1, S. 228–239 (2008)

    Google Scholar 

  11. Faugeras, O., Hotz, B., Mathieu, H., Vieville, T., Zhang, Z., Fua, P., Thron, E., Moll, L., Berry, G., Vuillemin, J., Bertin, P., Proy, C.: Real time correlation-based stereo: algorithm, implementations and application. Technischer Bericht von INRIA, Nummer RR-2013, Frankreich (1993)

    Google Scholar 

  12. Förstner, W.: Quality assessment of object location and point transfer using digital image correlation techniques. In: International Archives of Photogrammetry and Remote Sensing, Rio de Janeiro, Bd. XXV, A3a, Commission III (1984)

    Google Scholar 

  13. Fua, P.: Combining stereo and monocular information to compute dense depth maps that preserve depth discontinuities. In: International Joint Conference on Artificial Intelligence, Sydney (1991)

    Google Scholar 

  14. Fusiello, A., Roberto, V., Trucco, E.: Efficient stereo with multiple windowing. In: IEEE Conference on Computer Vision and Pattern Recognition, Puerto Rico, S. 858–863 (1997)

    Google Scholar 

  15. Gallup, D., Frahm, J.-M., Mordohai, P., Yang, Q., Pollefeys, M.: Real-time plane-sweeping stereo with multiple sweeping directions. In: IEEE Computer Vision and Pattern Recognition, Minneapolis (2007)

    Book  Google Scholar 

  16. Gehrig, S., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. In: International Conference on Computer Vision Systems, Liege. LNCS 5815, S. 134–143 (2009)

    Google Scholar 

  17. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. R. Stat. Soc. Ser. B (Methodolog.) 51(2), 271–279 (1989)

    Google Scholar 

  18. Grün, A.: Adaptive least squares correlation – a powerful image matching technique. S. Afr. J. Photogramm. Remote Sens. Cartograph. 14(3), 175–187 (1985)

    Google Scholar 

  19. Hirschmüller, H.: Stereo processing by semi-global matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  20. Hirschmüller, H., Gehrig, S.: Stereo matching in the presence of sub-pixel calibration errors. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami (2009)

    Book  Google Scholar 

  21. Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1582–1599 (2009)

    Article  Google Scholar 

  22. Hirschmüller, H., Innocent, P.R., Garibaldi, J.M.: Real-time correlation-based stereo vision with reduced border errors. Int. J. Comput. Vis. 47(1/2/3), 229–246 (2002)

    Google Scholar 

  23. Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 920–932 (1994)

    Article  Google Scholar 

  24. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and mutual information. In: International Conference on Computer Vision, Nice (2003)

    Google Scholar 

  25. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  26. Konolige, K.: Small vision system: hardware and implementation. In: International Symposium on Robotics Research, Hayama, S. 203–212 (1997)

    Google Scholar 

  27. Kuhn, A., Hirschmüller, H., Mayer, H.: Multi-resolution range data fusion for multi-view stereo reconstruction. In: German Conference on Pattern Recognition, Saarbrücken (2013)

    Book  Google Scholar 

  28. Kuhn, A., Mayer, H., Hirschmüller, H., Scharstein, D.: A TV prior for high-quality local multi-view stereo reconstruction. In: International Conference on 3D Vision, Tokyo (2014)

    Google Scholar 

  29. Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust and accurate 3D motion field estimation from stereo image sequences in real-time. In: European Conference on Computer Vision, Heraklion (2010)

    Google Scholar 

  30. Scharstein, D.: Sourcecode verschiedener Stereomethoden, Stand. https://?vision.?middlebury.?edu/?stereo/?code/? (2014)

    Google Scholar 

  31. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1/2/3), 7–42 (2002)

    Google Scholar 

  32. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nesic, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: German Conference on Pattern Recognition, Münster (2014)

    Book  Google Scholar 

  33. Schmid K., Lutz, P., Tomic, T., Mair, E., Hirschmüller, H.: Autonomous vision-based micro air vehicle for indoor and outdoor navigation. J. Field Robot. Spec. Issue Low Altitude Flight UAVs 31(4), 537–570 (2014)

    Google Scholar 

  34. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields. In: European Conference on Computer Vision, Graz, Bd. 2, S. 16–29 (2006)

    Google Scholar 

  35. Tappen, M.F., Freeman, W.T.: Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. In: IEEE International Conference on Computer Vision, S. 900–907 (2003)

    Google Scholar 

  36. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Upper Saddle River (1998)

    Google Scholar 

  37. Viola, P., Wells, W.M.: Alignment by maximization of mutual information. Int. J. Comput. Vis. 24(2), 137–154 (1997)

    Article  Google Scholar 

  38. Yoon, K.-J., Kweon, I.-S.: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Match. Mach. Intell. 28(4), 650–656 (2006)

    Article  Google Scholar 

  39. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings of the European Conference of Computer Vision, Stockholm, S. 151–158 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Hirschmüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Deutschland

About this entry

Cite this entry

Hirschmüller, H. (2016). Dichte Bildzuordnung. In: Freeden, W., Rummel, R. (eds) Handbuch der Geodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_42-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46900-2_42-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Online ISBN: 978-3-662-46900-2

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Dichte Bildzuordnung
    Published:
    24 September 2016

    DOI: https://doi.org/10.1007/978-3-662-46900-2_42-2

  2. Original

    Dichte Bildzuordnung
    Published:
    26 February 2016

    DOI: https://doi.org/10.1007/978-3-662-46900-2_42-1