Skip to main content

Ellipsoidal-Sphäroidale Representation of the Gravity Field/Ellipsoidische-sphroidale Darstellung des Schwerefeldes

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Handbuch der Geodäsie

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 232 Accesses

Abstract

We begin with a chapter on motivation, namely why the Earth cannot be a ball due to Earth rotation which we daily experience. In contrast, the Earth’s gravity field is axially symmetric as a first order approximation, not spherically symmetric. The same axially symmetric gravity field applies to all planets and mini-planets, of course the Moon, the Sun and other space objects which intrinsically rotate. The second chapter is therefore devoted to the definition of ellipsoidal-spheroidal coordinate which allow separation of variables. The mixed elliptic-trigonometric elliptic coordinates are generated by the intersection by a family of confocal, oblate spheroids, a family of confocal half hyperboloids and a family of half planes: in this coordinate system {λ, ϕ, u} we inject to forward transformation of spheroidal coordinates into Cartesian coordinates {x, y, z} and the uniquely inverted ones into the backward transformation {x, y, z}→{λ, ϕ, u}. In such a coordinate system we represent the eigenspace of the potential field in terms of the gravitational field being harmonic as well as the centrifugal potential field being anharmonic. Such an eigenspace is being described by normalized associated Legendre functions of first and second kind. The normalization is based on the global area element of the spheroid \(\mathbb {E}_{a,b}^2\). The third chapter is a short introduction into the Somigliana-Pizetti level ellipsoid in terms of its semi-major axis and its semi-minor axis as well as best estimation of the fundamental GeodeticParameters {W0, GM, J2, Ω} approximating the Physical Surface of the Planet Earth, namely the Gauss-Listing Geoid. These parameters determine the World Geodetic Datum for a fixed reference epoch. These parameters are called (i) the potential value of the equilibrium figure close to Mean Sea Level, (ii) the gravitational mass, (iii) the second kind, zero order (2, 0) of the gravitational field and finally (iv) the Mean Rotation Speed. These numerical values of the Planet Earth are numerically given. The best estimations of the form parameters derived from two constraints are presented for the Somigliana-Pizzetti Level Ellipsoid. In case of real observations we have to decide whether or not to reduce the constant tide effect. For this reason we have computed the “zero-frequency tidal reference system” and the “tide free reference system” which differ about 40 cm. The radii are {a = 6,378,136.572 m, b = 6,356,751.920 m} for the tide-free Geoid of Reference, but {a = 6,378,136.602 m, b = 6,356,751.860 m} for the zero-frequency tide Geoid of Reference. These results presented in the Datum 2000 differ significantly from the data of the Standard Geodetic Reference System 1980. The geostationary orbit computed in the Chap.4 balances the gravitational force and the centrifugal force to zero, the so-called NullSpace. Its value of 42,164 km distance from the Earth Center has been calculated in the quasi-spherical referenced coordinate system introduced by T. Krarup. This Null Space evaluates the degree/order term (0, 0) of the gravitational field and the degree/order terms (0, 0) and (2, 0) of the centrifugal field. A careful treatment of the axial symmetric gravity field representing this gravitational and centrifugal field of this degree/order amounts to solve a polynomial equation of order ten. The intersection point of these two forces has been calculated with a lot of efforts! Referring to the Somigliana-Pizzetti Reference Gravity Field we compute in all detail Molodenskyheights in Chap.5. In using the World Geodetic Datum 2000 we have presented the Telluroid, telluroid heights and the highlight “Molodensky Heights”. The highlight is our Quasi-geoid Map of East Germany, based on the minimum distance of the Physical Surface of the Earth to the Somigliana-Pizzetti telluroid. The topic of Chap.6 is the famous Mac Cullaghrepresentation of the time-variation of the multipoles of the gravity, generalizing the Newton gravitostatic gravity field to gravito dynamics in terms of Eulerian increments Ω. We build up the theory of the time-varying gravity field of excitation functions of various types: (i) tidal potential, (ii) loading potential, (iii) centrifugal potential and (iv) transverse stress. The mass density variation in time, namely caused by (i) initial mass density and (ii) the divergence of the time displacement vectors, is represented in terms (i) radial, (ii) spheroidal and (iii) toroidal displacement coefficients in terms of the spherical Love-Shida hypothesis. For the various excitation functions we compute those coefficients.

Zusammenfassung

Wie beginnen das erste Kapitel mit dem Argument, dass die Erde auf Grund der Erdrotation keine Kugel mit konstantem Radius sein kann, sondern ein abgeplattetes Ellipsoid ist, im Einklang mit unserer täglicher Erfahrung: die Erde rotiert in etwa 24 Stunden. Wie geben in einführend die Abplattung, die Rotation Periode, den Näherungswert aller terrestrischen Planeten an, ebenso wie die charakteristischen Daten zum Planeten Erde, sowie verschiedene Definitionen über das Jahr, den Monat, der Tag. Das Schwerefeld der Erde besteht aus einem (i) Harmonischen Anteil und einem (ii) anharmonisch Anteil auf Grund der Erdrotation. Die spektrale Bedeutung des ,,geostationären Radius“ von 42.164 km, dem Null-Raum des Schwerefeldes außerhalb der rotierenden Erde. Das zweite Kapitel ist der genauen Definition von elliptischen-sphäroiden Koordinaten einer elliptischenErde gewidmet. Ellipsoid-harmonischen Reihen Entwicklungen des dreidimensionalen Laplace Operator runden das Kapitel ab. Das dritte Kapitel konzentriert sich auf das anharmonische Somigliana-Pizzetti Referenzfeld. Die besten Schätzungen der sog. Form-Parameter der Erde bilden einen ersten Höhepunkt. Das vierte Kapitel erlaubt den geostationären und geosynchronen Satelliten-Radius, den sog. Null-Raum des Schwerefeldes. Das Molodensky-Höhensystem steht im Zentrum des fünften Kapitels, das zentrale Höhensystem in Russland und Europa. Es basiert auf dem Somigliana-Pizzetti Referenz-Schwerefeld. Zentral ist das quasi-Geoid als GPS-Informationssystem der Erdparameterdaten. Die zeitliche Veränderung des terrestrischen Schwe-refeldes, die sog. MacCullagh Darstellung steht zentral im sechsten Kapitel. Den Abschluss bildet unsere Zusammenfassung, und der Ausblick: Geodäsie im 21. Jahrhundert.

Ellipsoidal-Spheroidal representation of the gravity field of a gravitating and rotating Earth, the anharmonic part as well as the harmonic part, zero, first and second derivatives of its potential field, deformable bodies

This contribution is dedicated to the late

Helmut Wolf

Founder of the one and only Institute of Theoretical Geodesy at Bonn University/Germany/ and for his courage to make me the youngest German Professor of Geodetic Sciences as well as

Friedrich W. Hehl

Theoretical Physicist, University of Cologne/Germany/ for his critical accompanying of my research and for his substantial advice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ansorge, M., Fischer, T., Kleinwächter, A., Meinel, R., Petroff, D., Schöbel, K.: Equilibrium configurations of homogeneous fluids in general relativity. Mon. Not. R. Astron. Soc. 355, 682–688 (2004)

    Article  Google Scholar 

  2. Ardalan, A.A., Grafarend, E.W.: Somigliana-Pizzetti gravity: the international gravity formula to the sub-nanoGal level. J. Geodesy 75, 424–437 (2001)

    Article  Google Scholar 

  3. Ardalan, A.A., Grafarend, E.W., Ihde, J.: Molodensky potential telluroid based on a minimum-distance map, Case study: the quasi-Geoid of East Germany in the World Geodetic Datum 2000. J. Geodesy 76, 127–138 (2002)

    Article  Google Scholar 

  4. Backus, G.E.: Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys. J. R. Astron. Soc. 13, 61–101 (1967)

    Article  Google Scholar 

  5. Ballani, L., Engels, J., Grafarend, E.: Global base functions for the mass density in the interior of a massive body (Earth). Manuscr. Geodaet. 18, 99–114 (1993)

    Google Scholar 

  6. Baranov, W.: La formulle de Stokes estelle correcte? Bull. Geod. 49, 27–34 (1975)

    Article  Google Scholar 

  7. Bjerhammar, A.: The energy integral for satellites. Report from the Division of Geodesy Division, Royal Institute of Technology, Stockholm (1967)

    Google Scholar 

  8. Bocchio, F.: Geodetic singularities. Rev. Geophys. Space Res. 20, 399–409 (1981)

    Article  Google Scholar 

  9. Bode, A., Grafarend, E.W.: The telluroid mapping based on a normal gravity potential including the centrifugal term. Boll. Geod. Sci. Aff. 41, 21–56 (1982)

    Google Scholar 

  10. Bursa, M., Kouba, J., Radcj, K., True, S.A., Vatn, Y., Vojtt skova, M.: Monitoring geoidal potential on [he basis of TOPEXj POSEIDON altimeter data and EGM96]. Paper presented at Scientific Assembly of LAG, Rio de Janeiro (1997)

    Google Scholar 

  11. Bursa, M., Radej, K., Sima, Z., True, S.A., Vatrt, V.: Determination of the geopotential scale factor from TOPEX/pOSEl DON satellite altimetry. Stud. Geophs. Geod. 14, 203–216 (1997)

    Article  Google Scholar 

  12. Bursa, M., Kouba, J., Radej, K., True, S.A., Vatrt, V., Vojtiskova, M.: Temporal variations in sea surface topography and dynamics of the Earth’s inertia ellipsoid. Stud. Geophs. Geod. 43, 7–19 (1999)

    Article  Google Scholar 

  13. Capderou, M.: Satellites – Orbits and Missions. Springer (2004)

    Google Scholar 

  14. Caputo, M.: The Gravity Field of the Earth. Academic, New York/London (1967)

    Google Scholar 

  15. Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium, IX+252pp. Yale University Press, New Haven (1969)

    Google Scholar 

  16. Chen, X., Nashed, Z., Qi, L.: Convergence of Newton’s method for singular smooth and non-smooth equations using adaptive outer inverses. SIAM J. Opt. 7, 445–462 (1997)

    Article  Google Scholar 

  17. Cheng, M.K., Shum, C.K., Tapley, B.D.: Determination of long term changes in the Earth’s gravity field from satellite laser ranging observations. J. Geophys. Res. 102(B10), 22377–22390 (1997)

    Article  Google Scholar 

  18. Denker, F.I., Torge, W.: The European gravimetric quasi-geoid EGG97 – an IAG supported continental enterprise. In: Forsberg, R., et al. (eds.) IAG Symposium. Proceedings, vol. 119, pp. 249–254. Springer, Berlin/Heidelberg/New York (1998)

    Google Scholar 

  19. Dixon, W.G.: Dynamics of extended bodies in general relativity II. Moments of the charge-current vector. Proc. R. Soc. Land. A 319, 509–547 (1970)

    Article  Google Scholar 

  20. Eringen, C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  21. Grafarend, E.: The definition of the telluroid. Bull. Geod. 52, 25–37 (1978)

    Article  Google Scholar 

  22. Grafarend, E.: Six lectures on geodesy and global geodynamics. In: Moritz, H., Sünkel, H., Graz (eds.) Mitteilungen der geodätischen Institute der Technischen Universität Graz, Folge 41, pp. 531–685 (1978)

    Google Scholar 

  23. Grafarend, E.: The time-varying gravitational potential field of a massive deformable body. Stud. Geophs. Geod. 44, 364–373 (2000)

    Article  Google Scholar 

  24. Grafarend, E., Ardalan, A.A.: World geodetic datum. J. Geod. 73, 611–623 (1999)

    Article  Google Scholar 

  25. Grafarend, E., Lohse, P.: The minimal distance mapping of the topographic surface onto the reference ellipsoid of revolution. Manuscipta Geosdaetica 16, 92–110 (1991)

    Google Scholar 

  26. Grafarend, E., Heidenreich, E.D., Schaffrin, B.: A representation of the standard gravity field. Manuscr. Geodaet. 2, 135–174 (1977)

    Google Scholar 

  27. Grafarend, E., Engels, J., Varga, P.: The spacetime gravitational field of a deformable body. J. Geod. 72, 11–30 (1997)

    Article  Google Scholar 

  28. Groten, E.: Current best estimates of the parameters of common relevance to astronomy, geodesy, and geodynamics. Internal Communications of IAG/ JUGG Special Commission 3, Darmstadt (1997)

    Google Scholar 

  29. Guo, R., Hu Xiao, G., Tang, B., Huang, Y., Liu, L., Cheng, L., Feng, H.E.: Precise orbit determination for geostationary satel-lites with multiple tracking techniques. Astronomy 55(8), 687–692 (2010). https://doi.org/10.1007/s11434-010-0074-x

    Google Scholar 

  30. Hehl, F.W., Obukov, Y.N.: Foundation of Classical Electrodynamics-Charge Flux and Metric. Birkhäuser, Boston/Basel/Berlin (2002)

    Google Scholar 

  31. Heikkinen, M.: Geschlossene Formeln zur Berechnung räumlicher geodätischer Koordinaten aus rechtwinkligen Ko-ordinaten. Z. Vermess 5, 207–211 (1982)

    Google Scholar 

  32. Heiskanen, W., Moritz, H.: Physical Geodesy, 364pp. W. H. Freeman, San Francisco (1967)

    Google Scholar 

  33. Hirvonen, R.: New theory of gravimetriy geodesy. Ann. Acad. Sci. Fennicae, A III (56) Helsinki (1960)

    Google Scholar 

  34. Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Publishing Company, New York (1965)

    Google Scholar 

  35. Iorio, L.: Orbital motion as gradiometers for post-Newtonian tidal effects. Astrophys. Space Sci. (2014). https://doi.org/10.3389/fspac.2014.00003

    Book  Google Scholar 

  36. Knickmeyer, E.H.: Eine approximative Lösung der allgemeinen linearen Geodatischen Randwertaufgabe durch Reihenentwicklung nach Kugelfunktionen. Deutsche Geodatische Kommission, Reihe C, Nr 304, Bayerische Akademie der Wissenschaften, Munchen (1984)

    Google Scholar 

  37. Knogl, J.S., Henkel, P., Guenther, C.H.: Precise Positioning of a Geostationary Data Relay using LEO Satellites. 53rd International Symposium ELMAR-2011, 14–16 Sept 2011, Zadar, pp. 325–328 (2011)

    Google Scholar 

  38. Kopeikin, S.M.: Reference ellipsoid and geoid in chronometric geodesy. Front. Fundam. Astron. 1, 1–15 (2016)

    Google Scholar 

  39. Kopeikin, S., Han, W., Mazurova, E.: Post-Newtonian reference ellipsoid for relativistic Geodesy. Phys. Rev. D 93, 044069 (2016)

    Article  Google Scholar 

  40. Lemoine, F.G., Smith, D.E., Kunz, L., Smith, R., Pavlis, E.C., Pavlis, N.K., Klosko, S.M., Chinn, D.S., Torrence, M.H., Williamson, R.G., Cox, E.M., Rachlin, K.E., Wang, Y.M., Kenyon, S.C., Salman, R., Trimmer, R., Rapp, R.H., Nerem, R.S.: The development of the NASA GSFC and NIMA joint geopotential model. In: Segawa, J., Fujimoto, H., Okubo, S. (eds.) Gravity, Geoid and Marine Geodesy, International Association of Geodesy Symposia, Vol. 117, pp. 461–469. Springer, Berlin/Heidelberg (1996)

    Chapter  Google Scholar 

  41. MacCullagh, J.: On the rotation of a solid body round a fixed point (being an account of the late Prof. MacCullagh’s lectures on that subject, compiled by S. Haughton). R Irish Acad, Trans 22, 139–154 (1855)

    Google Scholar 

  42. McClure, P.: Diurnal polar motion. NASA X-592-73-259, Goddard Space Flight Center, Greenbelt (1973)

    Google Scholar 

  43. Merriam, J.B.: Toroidal Love numbers and transverse stress at the Earth’s surface. J. Geophys. Res. 90(B9), 7795–7802 (1985)

    Article  Google Scholar 

  44. Mitrovica, J.X., Davis, J.L., Shapiro, I.I.: A spectral formalism for computing three-dimensional deformations due to surface loads – 1. Theory. J. Geophys. Res. 99(B4), 7057–7073 (1994)

    Article  Google Scholar 

  45. Molodensky, M.S.: Main problem of geodetic gravimetry. Trans. Centr. Res. Inst. G, A & C 42 (1945)

    Google Scholar 

  46. Molodensky, M.S.: External gravitational field and the figure of the Earth’s physical surface. Information of the USSR Academy of Sciences, Geographical and Geophysical Series 13, no. 3 (1948)

    Google Scholar 

  47. Molodensky, M.S., Eremeev, V.F., Yurkina, M.I.: Methods for study of the external gravitational field and figure of the Earth [trans’] from Russian by Israel Program for Scientific Translations for the Office of Technical Services, Department of Commerce, Washington, DC (1960)

    Google Scholar 

  48. Moritz, H.: Geodetic Reference System 1980, Geodesist’s Handbook. Bull. Geod. 66, 187–192 (1992)

    Article  Google Scholar 

  49. Moritz, H., Mueller, I.: Earth Rotation. Ungar, New York (1987)

    Google Scholar 

  50. Nagel, E.: Die Bezugssysteme der Satellitengeodasie. Deutsche Geodatische Kommission Reihe C, Heft Nr 223, Bayerische Akademie der Wissenschaften, Munchen (1976)

    Google Scholar 

  51. Neumann, J.: Entwicklung der in elliptischen Koordinaten ausgcdrucktcn rcziproken Entfernung zweicr Punkte in Reihen. Journal für die reine und angewandte Mathematik 37, 21–50 (1848)

    Google Scholar 

  52. Pail, R., Gruber, T., Fecher, T.: The Combined Gravity Model G00005c. GFZ Data Services (2016). http://doi.org/10.5880/icgem.2016.003

  53. Pizzetti, P.: Geodesia – Sulla espressione della gravita alla superficie del geoide, supposto ellisoidico. Atti Reale Accad Linc 3, 166–172 (1894)

    Google Scholar 

  54. Pizzetti, P.: Sopra il calcolo terico delle deriviazioni del geoide dall’ ellissoide. Ätti Accad. Sci. Torino. 46, 331–350 (1911)

    Google Scholar 

  55. Rapp, R.H., Wang, Y.M., Pavlis, N.K.: The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models. Report 410, Ohio State University Department of Geodetic Science and Surveying, Columbus (1991)

    Google Scholar 

  56. Ries, J.C., Eanes, R.J., Shum, C.K., Watkins, M.M.: Progress in the determination of the gravitational coefficient of the Earth. Geophys. Res. Lett. 19, 529–531 (1992)

    Article  Google Scholar 

  57. Saupe, D.: Discrete versus continuo us Newton’s method: a case study. Acta Appl. Math. 13, 59–80 (1988)

    Article  Google Scholar 

  58. Somigliana, C.: Teoria generale del campo gravitionale dell‘s ellipsoide. Mem. Soc. Astr. Ital. IV (1929)

    Google Scholar 

  59. Somigliana, C.: Geofisica – Sul campo gravitazionale esterno del geoide ellissoidico. Atti. Reale. Acad. Naz. Linc. Rendi. 6, 237–243 (1930)

    Google Scholar 

  60. Soop, E.M.: Handbook of Geostationary Orbit. Springer Co., Dordrecht (1994)

    Book  Google Scholar 

  61. Spada, G.: Changes in the Earth inertia tensor: the role of boundary conditions at the core—mantle interface. Geophys. Res. Lett. 22(24), 3557–3560 (1995)

    Article  Google Scholar 

  62. Tapley, B.D., Watkins, W.M., Ries, J.C., Davis, G.W., Eanes, R.J., Poole, S.R., Rim, H.J., Schutz, B.E., Shum, C.K., Nerem, R.S., Lerch, F.J., Marshall, J.A., Klosko, S.M., Pavlis, N.K., Williamson, R.G.: The JGM3 gravity model. J. Geophys. Res. 101, 28029–28049 (1996)

    Article  Google Scholar 

  63. Thong, N.C., Grafarend, E.W.: A spheroidal model of the terrestrial gravitational field. Manuscr. Geodaet. 14: 285–304 (1989); Vanitiek P, Krakiwsky E (1986) Geodesy: The Concepts. Elsevier Science, Amsterdam

    Google Scholar 

  64. Wolf, D.: Gravitational viscoelastodynarnics for a hydrostatic planet. Deutsche Geodatische Kommission, Reihe C, Heft Nr 452, Bayerische Akademie der Wissenschaften, München (1997)

    Google Scholar 

  65. Yang, Y., Yang, X., Li, Z., Feng, C.: Satellite orbit determination combining C-band ranging and differenced ranges by transfer. Chinese Sci. Bull. 58(19):2323–2328 (2013)

    Article  Google Scholar 

  66. Zund, J.: Foundations of differential geodesy, p. 373. Springer, Berlin (1994)

    Chapter  Google Scholar 

Download references

Acknowledgements

The author wants to thanks S. Kopeikin for his work on relativistic ellipsoidal figures of equilibrium

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik. W. Grafarend .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grafarend, E.W. (2020). Ellipsoidal-Sphäroidale Representation of the Gravity Field/Ellipsoidische-sphroidale Darstellung des Schwerefeldes. In: Freeden, W., Rummel, R. (eds) Handbuch der Geodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_104-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46900-2_104-2

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46900-2

  • Online ISBN: 978-3-662-46900-2

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Ellipsoidal-Sphäroidale Representation of the Gravity Field/Ellipsoidische-sphroidale Darstellung des Schwerefeldes
    Published:
    20 November 2019

    DOI: https://doi.org/10.1007/978-3-662-46900-2_104-2

  2. Original

    Ellipsoidal-Spheroidal Representation of the Gravity Field/Ellipsoidische-sphroidale Darstellung des Schwerefeldes
    Published:
    16 April 2019

    DOI: https://doi.org/10.1007/978-3-662-46900-2_104-1