Skip to main content

Korrosionsverhalten metallischer Werkstoffe in schwefelhaltigen Gasen mit niedrigem Sauerstoffpartialdruck im Temperaturbereich 500–700 °C

  • Chapter
  • First Online:
  • 2419 Accesses

Zusammenfassung

Ausgewählte austenitische Stähle und Nickelbasislegierungen wurden im Hinblick auf ihr Korrosionsverhalten bei 700 °C in einem H2-H2O-H2S-Modellgas untersucht. Werkstoffe, die unter diesen Bedingungen die geringsten Korrosionsraten aufwiesen, wurden detailliert bezüglich der Temperaturabhängigkeit der Korrosionsraten bei 500–700 °C erprobt. Dabei zeigten Alloy 693, 625 und 740 eine anomale Temperaturabhängigkeit der Korrosionsraten, während alloy HR-160 bei allen Temperaturen sehr geringe Korrosionsraten aufwies. Bei Grundlagenuntersuchungen an Modelllegierungen zeigte sich, dass hohe Co-Zusätze zu binären NiCr-Legierungen die Korrosionsraten deutlich reduzieren und bei 650 sowie 700 °C zur Bildung von Cr-Oxidschichten führten. Zusätze von Ti oder Si in einer NiCrCo-Modelllegierung förderten die Cr-Oxidbildung bei niedrigen Temperaturen (500–600 °C). Auch Zusätze von Nb zu einer binären NiCr-Modelllegierung bewirkten im Gegensatz zu Zusätzen von Mo eine Reduzierung der Korrosionsraten durch Bildung Nb-reicher intermetallischer Phasen an der Schicht/Legierungs-Grenzfläche. Allerdings trat dieser positive Effekt lediglich bei den höchsten Versuchstemperaturen (650 und 700 °C) auf.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Bakker WT, Stringer J (1997) Mixed oxidant high temperature corrosion in gasifiers and power plants. Mater High Temp 14:101–108

    Article  Google Scholar 

  2. Bendick W, Kremser T, Spindler M (2004) 27Cr-32Ni-Nb-Ce steel. In: Creep properties of heat resistant steels and superalloys, Bd 2B. Springer, Berlin Heidelberg, S 301–308

    Google Scholar 

  3. Chyrkin A, Huczkowski P, Shemet V, Singheiser L, Quadakkers WJ (2011) Sub-scale depletion and enrichment processes during high temperature oxidation of the nickel base alloy 625 in the temperature range 900–1000°C. Oxid Met 75:143–166

    Article  Google Scholar 

  4. Davin A, Coutsouradis D (1962) Dry corrosion of cobalt, chromium and Co-Cr, Ni-Cr and Fe-Cr alloys in hydrogen sulphide atmospheres. Cobalt 17:23–36

    Google Scholar 

  5. Davin A (1966) Kinetik der Sulfidierung von Kobalt in Schwefeldampf. Cobalt 30:19

    Google Scholar 

  6. Debruyn W, Casteels F, Tas H (1987) Corrosion of materials in an environment typical of coal gasification plants. Mater Sci Eng 87:169–174

    Article  Google Scholar 

  7. Dunning JS, Alman DE, Rawers JC (2001) The effect of silicon and aluminum additions on the oxidation resistance of lean chromium stainless steels. In: Proceedings of the 15th Annual Conference on Fossil Energy Materials, Knoxville TN (US)

    Google Scholar 

  8. Ehlers J, Smaardijk EJ, Penkalla HJ, Tyagi AK, Singheiser L, Quadakkers WJ (1999) Effect of steel composition on the bell-shape temperature dependence of oxidation in water vapour containing environments. In: Proceedings of International Corrosion Congress, Cape Town, South Africa, Paper 4:336

    Google Scholar 

  9. Ennis PJ, Quadakkers WJ (1987) Corrosion and creep of nickel base alloys in steam reforming gas. High temperature alloys – their exploitable potential. JRC Petten, NL, Elsevier Applied Science, London New York, S 465–474

    Chapter  Google Scholar 

  10. Garcia Fresnillo L (2013) Oxidation behaviour and microstructure stability of Ni- and Co-base alloys for advanced steam turbine components. Dissertation RWTH, Aachen

    Google Scholar 

  11. García-Fresnillo L, Chyrkin A, Hüttel T, Böhme C, Barnikel J, Grüner D, Schmitz F, Quadakkers WJ (2012) Oxide scale formation and subsurface phase transformations during long-term steam exposure of the cobalt base alloy 25. Mater Corros 63:878–888

    Article  Google Scholar 

  12. Garcia-Fresnillo L, Chyrkin A, Böhme C, Barnikel J, Schmitz F, Quadakkers WJ (2014) Oxidation behaviour and microstructural stability of alloy 625 during long-term exposure in steam. J Mater Sci 49:6127–6142

    Article  Google Scholar 

  13. Gleeson B, Douglass DL, Gesmundo F (1989) Effect of Nb on the high-temperature sulfidation behavior of cobalt. Oxid Met 31:209–236

    Article  Google Scholar 

  14. Grabke HJ (1993) Fundamental aspects of oxidation, sulfidation, chloridation and carburization in the gasifier environment. Mater High Temp 11:23–29

    Article  Google Scholar 

  15. Grabke HJ, Lobnig R, Papaiacovou P (1989) Mechanisms of oxidation and sulfidation of high temperature alloys in H2-H2O-H2S mixtures. Stud Inorg Chem 9:263–289. H. C. Elsevier, The Netherlands, ISSN: 0169-3158

    Google Scholar 

  16. Habazaki H, Mitsui H, Ito K, Asami K, Hashimoto K, Mrowec S (2002) Roles of aluminium and chromium in sulfidation and oxidation of sputter-deposited Al- and Cr-refractory metal alloys. Corros Sci 44:285–301

    Article  Google Scholar 

  17. International Energy Agency (2014) World Energy Outlook. http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf. Zugegriffen: 20. Nov. 2014

  18. Jalowicka A, Nowak W, Naumenko D, Singheiser L, Quadakkers WJ (2014) Effect of nickel base superalloy composition on oxidation resistance in SO2 containing, high pO2 environments. Mater Corros 65:178–187

    Google Scholar 

  19. Levi TP, Norton JF, Bakker WT (1999) A laboratory study of the corrosion behaviour of four candidate heat exchanger alloys exposed to a reducing-sulphidising gaseous environment at 600°C. Mater Corros 50:405–416

    Article  Google Scholar 

  20. Lobnig RE, Grabke HJ (1990) Mechanisms of simultaneous sulfidation and oxidation of Fe-Cr and Fe-Cr-Ni-alloys and of the failure of protective chromia scales. Corros Sci 30:1045–1071

    Article  Google Scholar 

  21. Luthra KL, Shores DA (1980) Mechanism of Na2 SO4 induced corrosion at 600°–900°C. J Electrochem Soc 127:2202–2210

    Google Scholar 

  22. Montgomery M, Jensen SA, Rasmussen F, Vilhelmsen T (2009) Fireside corrosion and steamside oxidation of 9–12% Cr martensitic steels exposed for long term testing. Corros Eng Sci Technol 44:196–210

    Article  Google Scholar 

  23. Morimoto T, Onay B, Fukuda Y, Kida E, Seo T (1997) Behavior of heat exchanger tube materials in simulated coal gasification atmospheres with different H2O-content. Mater High Temp 14:119–126

    Google Scholar 

  24. Mrowec S (1980) Mechanism of high-temperature sulphide corrosion of metals and alloys. Mater Corros 31:371–386

    Article  Google Scholar 

  25. Mrowec S, Przybylski K (1984) Defect and transport properties of sulfides and sulfidation of metals. High Temp Mater Proc 6:1–79

    Article  Google Scholar 

  26. Mrowec S, Przybylski K (1985) Transport properties of sulfide scales and sulfidation of metals and alloys. Oxid Met 23:107–139

    Article  Google Scholar 

  27. Natesan K, Bakker WT (1984) Corrosion in coal gasification systems. J Mater Energy Sys 6:163–171

    Article  Google Scholar 

  28. Niu Y, Gesmundo F, Viani F (1993) The corrosion of Fe, Co and Ni alloys containing 15 and 30 wt% Nb in H2-H2S mixtures under 10-8 atm S2 at 600°C. Solid State Ionics 63–65:765–771

    Google Scholar 

  29. Oakey JE, Lowe TM, Simms NJ, Norton JF (1993) Materials experience in British coals spouted bed gasifier. Mater High Temp 11:90–93

    Article  Google Scholar 

  30. Quadakkers WJ (1987) High temperature corrosion in the service environments of a nuclear process heat plant. Mater Sci Eng 87:107–112

    Article  Google Scholar 

  31. Schütze M (1996) Ergebnisse des Forschungs- und Entwicklungsprogramms „Korrosion und Korrosionsschutz“. Mater Corros 47:103–105

    Google Scholar 

  32. Simms NJ, Nicholls JR, Oakey JE (2001) Materials performance in solid fuel gasification systems. High temperature corrosion and protection of materials 5. Trans Tech Publications Ltd, Zurich-Uetikon, S 947–954

    Article  Google Scholar 

  33. Smolik GR, Flinn JE (1986) Stress and environmental interactions for INCOLOY 800H in coal gasification environments. J Mater Energ Syst 8:297–305

    Article  Google Scholar 

  34. Wegge S, Grabke HJ (1992) Einflüsse von Silicium und Kohlenstoff auf die Sulfidierung von Eisen. Mater Corros 43:437–446

    Article  Google Scholar 

  35. Young DJ, Zurek J, Singheiser L, Quadakkers WJ (2011) Temperature dependence of oxide scale formation on high-Cr ferritic steels in Ar-H2-H2O. Corros Sci 53:2131–2141

    Article  Google Scholar 

  36. Zurek J, Wessel E, Niewolak L, Schmitz F, Kern TU, Singheiser L, Quadakkers WJ (2004) Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650°C. Corros Sci 46:2301–2317

    Article  Google Scholar 

  37. Zurek J, Hejrani E, Müller M, Quadakkers WJ (2014) Korrosionsverhalten metallischer Werkstoffe für innovative Vergasungsverfahren. Chem Ing Tech 86:1726–1734

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Zurek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zurek, J., Hejrani, E., Müller, M., Quadakkers, W.J. (2018). Korrosionsverhalten metallischer Werkstoffe in schwefelhaltigen Gasen mit niedrigem Sauerstoffpartialdruck im Temperaturbereich 500–700 °C. In: Krzack, S., Gutte, H., Meyer, B. (eds) Stoffliche Nutzung von Braunkohle. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46251-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46251-5_32

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46250-8

  • Online ISBN: 978-3-662-46251-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics