Skip to main content

Virtualisierung von Hochtemperaturprozessen

  • Chapter
  • First Online:
  • 2395 Accesses

Zusammenfassung

CFD-Simulationen von kohlebeschickten Vergasern erfordern mehrere fortschrittliche mathematische Modelle, um die komplexen, mehrphasigen, reaktiven Strömungssysteme zu beschreiben. Insbesondere die Pyrolyse und die heterogenen Verbrennungs- und Vergasungsreaktionen des Kokses sind entscheidend für die akkurate Beschreibung des Vergasungsverhaltens. Dieser Abschnitt zeigt, wie fortschrittliche Kohlekonversionsmodelle für die Pyrolyse und die Kokskonversion mit der CFD gekoppelt werden können, mit dem Ziel korrekte Simulationen durchzuführen und die benötigten Rechenressourcen zu limitieren. Die Ergebnisse werden abschließend durch den Vergleich mit zwei Vergasungstests, die mit Kohlen unterschiedlichen Inkohlungsgrads (high-rank semi-anthracite bis low-rank lignite) durchgeführt wurden, validiert.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. ANSYS-Fluent 14 (2011) Fluent 14. Theory Guide. ANSYS, Inc.

    Google Scholar 

  2. Bhatia SK, Perlmutter DD (1980) A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J 26(3):379–386. https://doi.org/10.1002/aic.690260308

    Article  Google Scholar 

  3. Bhatia SK, Perlmutter DD (1981) A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J 27(2):247–254. https://doi.org/10.1002/aic.690270211

    Article  Google Scholar 

  4. Brown BW, Smoot LD, Smith PJ, Hedman PO (1988) Measurement and prediction of entrained-flow gasification processes. AIChE J 34(3):435–446. https://doi.org/10.1002/aic.690340311

    Article  Google Scholar 

  5. Chen L, Yong SZ, Ghoniem AF (2012) Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog Energy Combust 38(2):156–214. https://doi.org/10.1016/j.pecs.2011.09.003

    Article  Google Scholar 

  6. Cheng P (1964) Two-dimensional radiating gas flow by a moment method. AIAA J 2(9):1662–1664. https://doi.org/10.2514/3.2645

    Article  MathSciNet  MATH  Google Scholar 

  7. Eaton AM, Smoot LD, Hill SC, Eatough CN (1999) Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Prog Energy Combust 25(4):387–436. https://doi.org/10.1016/S0360-1285(99)00008-8

    Article  Google Scholar 

  8. Genetti D, Fletcher TH, Pugmire RJ (1999) Development and application of a correlation of 13C NMR chemical structural analyses of coal based on elemental composition and volatile matter content. Energy Fuel 13(1):60–68. https://doi.org/10.1021/ef980074k

    Article  Google Scholar 

  9. Gran IR, Magnussen BF (1996) A numerical study of a bluff-body stabilized diffusion flame. Part 1: Influence of turbulence modeling and boundary conditions. Combust Sci Technol 119(1–6):171–190. https://doi.org/10.1080/00102209608951998

    Article  Google Scholar 

  10. Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR (1989) Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuel 3(2):175–186. https://doi.org/10.1021/ef00014a011

    Article  Google Scholar 

  11. Hashimoto N, Kurose R, Shirai H (2012) Numerical simulation of pulverized coal jet flame employing the TDP model. Fuel 97:277–287. https://doi.org/10.1016/j.fuel.2012.03.005

    Article  Google Scholar 

  12. Hodge EM (2009) The coal char-CO2 reaction at high temperature and high pressure. Dissertation, University of New South Wales, Australia

    Google Scholar 

  13. Hurt RH, Sun J-K, Lunden MM (1998) A kinetic model of carbon burnout in pulverized coal combustion. Combust Flame 113:181–197. https://doi.org/10.1016/s0010-2180(97)00240-x

    Article  Google Scholar 

  14. Jovanovic R, Milewska A, Swiatkowski B, Goanta A, Spliethoff H (2011) Numerical investigation of influence of homogeneous/heterogeneous ignition/combustion mechanisms on ignition point position during pulverized coal combustion in oxygen enriched and recycled flue gases atmosphere. Int J Heat Mass Tran 54(4):921–931. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.011

    Article  MATH  Google Scholar 

  15. Kazakov A, Frenklach M (1994) Reduced reaction sets based on GRI-MECH 1.2. http://www.me.berkeley.edu/drm/. Zugegriffen: 23. Nov. 2016

  16. Kobayashi H, Howard JB, Sarofim AF (1977) Coal devolatilization at high temperatures. Symp Int Combust 16(1):411–425. https://doi.org/10.1016/S0082-0784(77)80341-X

    Article  Google Scholar 

  17. Laurendeau NM (1978) Heterogeneous kinetics of coal char gasification and combustion. Prog Energ Combust 4(4):221–270. https://doi.org/10.1016/0360-1285(78)90008-4

    Article  Google Scholar 

  18. Liu G-S, Niksa S (2004) Coal conversion submodels for design applications at elevated pressures. Part II: Char gasification. Prog Energ Combust 30(6):679–717. https://doi.org/10.1016/j.pecs.2004.08.001

    Article  Google Scholar 

  19. Niksa S, Kerstein AR (1991) FLASHCHAIN Theory for rapid coal devolatilization kinetics 1: Formulation. Energy Fuel 5(5):647–665. https://doi.org/10.1021/ef00029a006

    Article  Google Scholar 

  20. Niksa S, Liu G-S, Hurt RH (2003) Coal conversion submodels for design applications at elevated pressures. Part I: Devolatilization and char oxidation. Prog Energy Combust 29(5):425–477. https://doi.org/10.1016/s0360-1285(03)00033-9

    Article  Google Scholar 

  21. Nsakala NY, Patel RL, Lao TC (1982) Combustion and gasification characteristics of chars from four commercially significant coals of different rank: Final report. Technical report, electric power research institute. http://www.osti.gov/scitech/servlets/purl/6787316. Zugegriffen: 23. Nov. 2016. https://doi.org/10.2172/6787316

  22. Rehm M, Seifert P, Meyer B (2009) Theoretical and numerical investigation on the EDC-model for turbulence-chemistry interaction at gasification conditions. Comput Chem Eng 33(2):402–407. https://doi.org/10.1016/j.compchemeng.2008.11.006

    Article  Google Scholar 

  23. Roberts DG, Harris DJ (2000) Char gasification with O2, CO2, and H2O: effects of pressure on intrinsic reaction kinetics. Energy Fuel 14(2):483–489. https://doi.org/10.1021/ef9901894

    Article  Google Scholar 

  24. Roberts DG, Ilyushechkin AY, Harris DJ (2012) Linking laboratory data with pilot scale entrained flow coal gasification performance. Part 1: Laboratory characterisation. Fuel Process Technol 94(1):86–93. https://doi.org/10.1016/j.fuproc.2011.10.013

    Article  Google Scholar 

  25. Roberts DG, Harris DJ, Tremel A, Ilyushechkin AY (2012) Linking laboratory data with pilot scale entrained flow coal gasification performance. Part 2: Pilot scale testing. Fuel Process Technol 94(1):26–33. https://doi.org/10.1016/j.fuproc.2011.10.011

    Article  Google Scholar 

  26. Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24(3):227–238. https://doi.org/10.1016/0045-7930(94)00032-T

    Article  MATH  Google Scholar 

  27. Shurtz RC, Fletcher TH (2013) Coal char-CO2 gasification measurements and modeling in a pressurized flat-flame burner. Energy Fuel 27(6):3022–3038. https://doi.org/10.1021/ef400253c

    Article  Google Scholar 

  28. Smith IA (1982) The combustion rates of coal chars: a review. Symp Int Combust 19(1):1045–1065. https://doi.org/10.1016/S0082-0784(82)80281-6

    Article  Google Scholar 

  29. Smith TF, Shen ZF, Friedman JN (1982) Evaluation of coefficients for the weighted sum of gray gases model. J Heat Transf 104(4):602–608. https://doi.org/10.1115/1.3245174

    Article  Google Scholar 

  30. Solomon PR, Hamblen DG, Carangelo RM, Serio MA, Deshpande GV (1988) General model of coal devolatilization. Energy Fuel 2(4):405–422. https://doi.org/10.1021/ef00010a006

    Article  Google Scholar 

  31. Sommariva S, Maffei T, Migliavacca G, Faravelli T, Ranzi E (2010) A predictive multi-step kinetic model of coal devolatilization. Fuel 89(2):318–328. https://doi.org/10.1016/j.fuel.2009.07.023

    Article  Google Scholar 

  32. Stein OT, Olenik G, Kronenburg A, Cavallo Marincola F, Franchetti BM, Kempf AM, Ghiani M, Vascellari M, Hasse C (2013) Towards comprehensive coal combustion modelling for LES. Flow Turbul Combust 90(4):859–884. https://doi.org/10.1007/s10494-012-9423-y

    Article  Google Scholar 

  33. Tremel A, Spliethoff H (2013) Gasification kinetics during entrained flow gasification – Part III: Modelling and optimisation of entrained flow gasifiers. Fuel 107:170–182. https://doi.org/10.1016/j.fuel.2013.01.062

    Article  Google Scholar 

  34. Van Essendelft D, Li T, Nicoletti P, Jordan T (2014) Advanced chemistry surrogate model development within C3M for CFD modeling. Part 1: Methodology development for coal pyrolysis. Ind Eng Chem Res 53(18):7780–7796. https://doi.org/10.1021/ie402678f

    Article  Google Scholar 

  35. Vascellari M, Cau G (2012) Influence of turbulence-chemical interaction on CFD pulverized coal MILD combustion modeling. Fuel 101:90–101. https://doi.org/10.1016/j.fuel.2011.07.042

    Article  Google Scholar 

  36. Vascellari M, Arora R, Pollack M, Hasse C (2013) Simulation of entrained flow gasification with advanced coal conversion submodels. Part 1: Pyrolysis. Fuel 113:654–669. https://doi.org/10.1016/j.fuel.2013.06.014

    Article  Google Scholar 

  37. Vascellari M, Schulze S, Nikrityuk PA, Safronov D, Hasse C (2014) Numerical simulation of pulverized coal MILD combustion using a new heterogeneous combustion submodel. Flow Turbul Combust 92(1–2):319–345. https://doi.org/10.1007/s10494-013-9467-7

    Article  Google Scholar 

  38. Vascellari M, Arora R, Hasse C (2014) Simulation of entrained flow gasification with advanced coal conversion submodels. Part 2: Char conversion. Fuel 118:369–384. https://doi.org/10.1016/j.fuel.2013.11.004

    Article  Google Scholar 

  39. Vascellari M, Roberts DG, Hla SS, Harris DJ, Hasse C (2015) From laboratory-scale experiments to industrial-scale CFD simulations of entrained flow coal gasification. Fuel 152:58–73. https://doi.org/10.1016/j.fuel.2015.01.038

    Article  Google Scholar 

  40. Zhao Y, Serio MA, Bassilakis R, Solomon PR (1994) A method of predicting coal devolatilization behavior based on the elemental composition. Symp Int Combust 25(1):553–560. https://doi.org/10.1016/S0082-0784(06)80685-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hasse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vascellari, M., Hildebrandt, K., Hasse, C. (2018). Virtualisierung von Hochtemperaturprozessen. In: Krzack, S., Gutte, H., Meyer, B. (eds) Stoffliche Nutzung von Braunkohle. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46251-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46251-5_22

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46250-8

  • Online ISBN: 978-3-662-46251-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics