Skip to main content

Computing the Dynamic Diameter of Non-Deterministic Dynamic Networks is Hard

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2014)

Abstract

A dynamic network is a communication network whose communication structure can evolve over time. The dynamic diameter is the counterpart of the classical static diameter, it is the maximum time needed for a node to causally influence any other node in the network. We consider the problem of computing the dynamic diameter of a given dynamic network. If the evolution is known a priori, that is if the network is deterministic, it is known it is quite easy to compute this dynamic diameter. If the evolution is not known a priori, that is if the network is non-deterministic, we show that the problem is hard to solve or approximate. In some cases, this hardness holds also when there is a static connected subgraph for the dynamic network.

In this note, we consider an important subfamily of non-deterministic dynamic networks: the time-homogeneous dynamic networks. We prove that it is hard to compute and approximate the value of the dynamic diameter for time-homogeneous dynamic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afek, Y., Gafni, E.: Asynchrony from synchrony. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 225–239. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-varying graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 29–41. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In: Pierre, S., Barbeau, M., An, H.-C. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 259–270. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Bui-Xuan, B.-M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

    Article  MathSciNet  Google Scholar 

  5. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed systems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)

    Article  MATH  Google Scholar 

  6. Chlebík, M., Chlebíková, J.: Complexity of approximating bounded variants of optimization problems. Theor. Comput. Sci. 354(3), 320–338 (2006)

    Article  MATH  Google Scholar 

  7. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel, Emerg. Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  8. Coulouma, É., Godard, E.: A characterization of dynamic networks where consensus is solvable. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 24–35. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced matching, and pricing: connections and tight (subexponential time) approximation hardnesses. In: FOCS, pp. 370–379. IEEE Computer Society (2013)

    Google Scholar 

  10. Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumor spreading in social networks. Theor. Comput. Sci. 412(24), 2602–2610 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferreira, A.: Building a reference combinatorial model for MANETs. IEEE Netw. 18(5), 24–29 (2004)

    Article  Google Scholar 

  12. Godard, E., Peters, J.: Consensus vs. broadcast in communication networks with arbitrary mobile omission faults. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 29–41. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Jones, E.P.C., Li, L., Schmidtke, J.K., Ward, P.A.S.: Practical routing in delay-tolerant networks. IEEE Trans. Mob. Comput. 6(8), 943–959 (2007)

    Article  Google Scholar 

  14. Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in a social communication network. In: Proceedings of the 14th International Conference on Knowledge Discovery and Data Mining (KDD), pp. 435–443 (2008)

    Google Scholar 

  15. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the 42nd ACM Symposium on Theory of computing (STOC), pp. 513–522. ACM (2010)

    Google Scholar 

  16. Liu, C., Wu, J.: Scalable routing in cyclic mobile networks. IEEE Trans. Parallel Distrib. Syst. 20(9), 1325–1338 (2009)

    Article  Google Scholar 

  17. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 553–564. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Ros, F.J., Ruiz, P.M.: Minimum broadcasting structure for optimal data dissemination in vehicular networks. IEEE Trans. Veh. Technol. 62(8), 3964–3973 (2013)

    Article  Google Scholar 

  19. Raynal, M., Stainer, J.: Synchrony weakened by message adversaries vs asynchrony restricted by failure detectors. In: Fatourou, P., Taubenfeld, G. (eds.) PODC, pp. 166–175. ACM (2013)

    Google Scholar 

  20. Stockmeyer, L., Vazirani, V.: NP-completeness of some generalizations of the maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, Z.: Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: overview and challenges. IEEE Commun. Surv. Tutor. 8(1), 24–37 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Godard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Godard, E., Mazauric, D. (2015). Computing the Dynamic Diameter of Non-Deterministic Dynamic Networks is Hard. In: Gao, J., Efrat, A., Fekete, S., Zhang, Y. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2014. Lecture Notes in Computer Science(), vol 8847. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46018-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46018-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46017-7

  • Online ISBN: 978-3-662-46018-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics