Skip to main content

Multi-Robot Foremost Coverage of Time-Varying Graphs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8847))

Abstract

In this paper we demonstrate the application of time-varying graphs (TVGs) for modeling and analyzing multi-robot foremost coverage in dynamic environments. In particular, we consider the multi-robot, multi-depot Dynamic Map Visitation Problem (DMVP), in which a team of robots must visit a collection of critical locations as quickly as possible, in an environment that may change rapidly and unpredictably during navigation. We analyze DMVP in the context of the \(\mathcal {R} \supset \mathcal {B} \supset \mathcal {P}\) TVG hierarchy. We present exact offline algorithms for \(k\) robots on edge-recurrent TVGs (\(\mathcal {R}\)) over a range of topologies motivated by border coverage: an \(O(Tn)\) algorithm on a path and an \(O(T\frac{n^2}{k})\) algorithm on a cycle (where \(T\) is a time bound that is linear in the input size), as well as polynomial and fixed parameter tractable solutions for more general notions of border coverage. We also present algorithms for the case of two robots on a tree (and outline generalizations to \(k\) robots), including an \(O(n^5)\) exact algorithm for the case of edge-periodic TVGs (\(\mathcal {P}\)) with period 2, and a tight poly-time approximation for time-bounded edge-recurrent TVGs (\(\mathcal {B}\)). Finally, we present a linear-time \(\frac{12 \varDelta }{5}\)-approximation for two robots on general graphs in \(\mathcal {B}\) with edge-recurrence bound \(\varDelta \).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aaron, E., Kranakis, E., Krizanc, D.: On the complexity of the multi-robot, multi-depot map visitation problem. In: IEEE MASS, pp. 795–800 (2011)

    Google Scholar 

  2. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: Foremost waypoint coverage of time-varying graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 29–41. Springer, Heidelberg (2014). http://www.univ-orleans.fr/lifo/evenements/WG2014/

    Chapter  Google Scholar 

  3. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. Distr. Comp. 24(1), 31–44 (2011)

    Article  MATH  Google Scholar 

  4. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. OMEGA 34(3), 209–219 (2006)

    Article  Google Scholar 

  5. Bhadra, S., Ferreira, A.: Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks. In: Pierre, S., Barbeau, M., An, H.-C. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 259–270. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Bui-Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. IJ Found. Comp. Sci. 14(02), 267–285 (2003)

    Article  MathSciNet  Google Scholar 

  7. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations in time-varying graphs: broadcasting under unstructured mobility. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 111–124. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPED 27(5), 387–408 (2012)

    Google Scholar 

  9. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (Cover Time of a Simple Random Walk on Evolving Graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Choset, H.: Coverage for robotics - a survey of recent results. Ann. Math. Artif. Intell. 31, 113–126 (2001)

    Article  Google Scholar 

  11. Correll, N., Rutishauser, S., Martinoli, A.: Comparing coordination schemes for miniature robotic swarms: a case study in boundary coverage of regular structures. In: Khatib, O., Kumar, V., Rus, D. (eds.) Experimental Robotics. STAR, vol. 39, pp. 471–480. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Dynia, M., Kutyłowski, J., der Heide, F.M., Schindelhauer, C.: Smart robot teams exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 327–338. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Easton, K., Burdick, J.: A coverage algorithm for multi-robot boundary inspection. In: Proceedings of ICRA, pp. 727–734 (2005)

    Google Scholar 

  15. Fakcharoenphol, J., Harrelson, C., Rao, S.: The \(k\)-traveling repairman problem. ACM Trans. Algorithms 3(4) (2007). http://dl.acm.org/citation.cfm?doid=1290672.1290677

  16. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  18. Godard, E., Mazauric D.: Computing the dynamic diameter of non-deterministic dynamic networks is hard. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.) ALGOSENSORS 2014. LNCS, vol. 8847, pp. 88–102. Springer, Heidelberg (2015)

    Google Scholar 

  19. Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Ilcinkas, D., Wade, A.M.: Exploration of the T-Interval-Connected Dynamic Graphs: the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 13–23. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: STOC, pp. 513–522 (2010)

    Google Scholar 

  22. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT News 42(1), 82–96 (2011)

    Article  Google Scholar 

  23. Kumar, S., Lai, T., Arora, A.: Barrier coverage with wireless sensors. In: ACM MobiCom, pp. 284–298 (2005)

    Google Scholar 

  24. Mans, B., Mathieson, L.: On the treewidth of dynamic graphs. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 349–360. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 553–564. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  26. Nagamochi, H., Okada, K.: A faster 2-approximation algorithm for the minmax p-traveling salesmen problem on a tree. Discrete Applied Math. 140(1-3), 103–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, L., Xu, Z., Xu, D.: Exact and approximation algorithms for the minmax k-traveling salesmen problem on a tree. EJOR 227, 284–292 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Krizanc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aaron, E., Krizanc, D., Meyerson, E. (2015). Multi-Robot Foremost Coverage of Time-Varying Graphs. In: Gao, J., Efrat, A., Fekete, S., Zhang, Y. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2014. Lecture Notes in Computer Science(), vol 8847. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46018-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46018-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46017-7

  • Online ISBN: 978-3-662-46018-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics