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Abstract. The Small Size League is one of the most important events
in RoboCup. The league is devoted to the advancing in mechanical de-
sign, artificial intelligence and multi-agent cooperation of mobile robots.
ZJUNlict from Zhejiang University has participated in this league for ten
years since 2004 and got the first place in RoboCup 2013. In this paper,
we introduce the main ideas of the robots’ hardware design of ZJUNlict,
and emphasize the intelligent control system including the hierarchical
architecture of strategy, the Lua script architecture, learning and select-
ing trajectories methods based on Dynamic Movement Primitives.

1 Introduction

Small Size League (SSL) is an important part of the RoboCup event. It is the
fastest and most intense game in RoboCup’s soccer competitions. The basic
rules of SSL are based on the rules of a FIFA’s soccer game, but each team
consists of only six robots playing on field that is 6.05m long by 4.05m wide.
There are two cameras mounted over the field to capture images, which are
processed in real time by a shared vision system, SSL-Vision [1]. This vision
system recognizes and locates the position and orientation of the robots and
the position of the ball, then broadcasts the information package to each team
via network. Of course, the objective of the game is to score more goals than
the opponent. SSL emphasizes on the fast movement of robots in a complex,
dynamic and competitive environment.

ZJUNlict from Zhejiang University has participated in this League for ten
years since 2004. We won the regional competitions in RoboCup ChinaOpen
2006, 2007, 2008, 2011. In RoboCup world-wide competition, we run into the
quarter finals in 2006, 2009, 2011, and got the semi finals in 2007 and 2008.
Since 2012, we have made a great progress and received the second place in
RoboCup2012, and won the championship in RoboCup2013.

The remainder of this paper is organized as follows. Section 2 briefly introduces
the hardware design of ZJUNlict’s robot. Section 3 introduces the intelligent
control system including strategy selection and trajectory generation based on
learning method. We present a play script writing in Lua and the results of the
DMPs’ execution in section 4, and section 5 concludes the paper.
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2 Robot Design

2.1 Components of the Robot

The robot we developed is equipped with 4 omni-directional wheels driven by a
50 watt brushless Maxon motors. There are another three major mechanisms:
a dribbling device, a shooting device and a chipping device. The robot and its
mechanical components are shown in Fig.1.

Fig. 1. Mechanical design of the robot: (1)shooting device; (2)omni-directional wheel;
(3)chipping device; (4)dribbling device

We employ the NiosII as the central processor module, which is a soft IP work-
ing in QuartusII and NiosII software programming environment. When powered
on or reset, the robot initialize itself, then run into the main loop to execute
the command sent from PC. The overview of our embedded software flowchart
is show in Fig.2.

Fig. 2. Embedded software flowchart
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3 Intelligent Control System

3.1 Hierarchical Architecture of Strategy

The software architecture of the intelligent control system is shown as Fig.3.
It is the central module for planning and coordination among robots in both
attack and defense modes. The whole system is composed of the World Model,
the Decision Module and the Control Module [2].

Fig. 3. Software architecture

The Decision Module is designed in a hierarchical structure, which is consist
of the PlayBook module [3], the Play module, the Agent module and the Skill
module. The PlayBook module selects the appropriate play by using a Bayesian
filter to evaluate the game status, as described in section 3.1.1. The Play module
focuses on coordination between teammates and is organized by a Finite State
Machine (FSM), as described in section 3.1.2. The Agent module emphasizes
on the planning skills of the single robot with the assigned tasks from the play.
The Agent module selects its behaviors from Behavior Tree (BT), as described
in section 3.1.3. The Skill module is a direct interface of the Decision Module
with the Control Module. The Skill module generates target point and selects
trajectory generation method, as described in section 3.1.4. The PlayBook, play-
level and agent-level are all configured using the script programming language
Lua, and will be detailed in Section 3.2.

The Control Module is responsible for the path planning and trajectory gen-
eration. It traditionally uses the Rapidly-exploring Random Trees (RRT’s) al-
gorithm [5] to find a feasible path and Bangbang-based algorithm [6] to solve
two-boundary trajectory planning. We also adopt the idea of Dynamics Move-
ment Primitives (DMPs) [9] to learn trajectories demonstrated by human, which
will be shown in Section 3.3.
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Finally, the World Model provides all the information of the match. The
History Message records all the decisions from the Decision Module. Besides, the
Vision Input means the original vision messages from two cameras, the Local
Sensor Message is uploaded from the robots via wireless. The Object Predictor
algorithm mainly focuses on our robots’ real velocity information in a time-
delayed system, and a Kalman Filter [10] method is appropriate for this situation.
Thus, the closed-loop system adjusts all robots’ behavior according to the change
of the environment in real time.

Game State Evaluation. A basic problem in SSL is when to attack and
when to defend, which means we should evaluate the game status based on
observed information. But it’s very complicated due to the complexity of game
situation. If only the observation is taken into account, the evaluation result will
be easily impacted by momentary sensing error, such as ball missing and robot
misidentification. Imagining an evaluator only considering ball’s position, then
a wrong location of the ball would lead to a huge impact on the choice between
attack and defense.

Thus, we propose a new method based on the Bayesian Theory [7], which eval-
uates the game state by combining the observed information and the historical
strategy. The new evaluator of the game status is shown as Fig. 4,

Observed Info :
zk

Game State : xk

P (xk) = f(xk−1, zk, uk)
Strategy :

uk

Fig. 4. Bayes-based evaluation method

where zk is determined by the observation, uk denotes the attribute of current
play script, which can be discretized into values such as 0(attack), 1(stalemate),
2(defense), the game state xk is calculated using a Bayesian filter method. Fig.
5 depicts the basic Bayesian filter algorithm in pseudo code.

Algorithm Bayesian filter p(xk,uk,zk)
for all xk do

p(xk) =
∑

xk
p
(
xk|uk, xk−1

)
p
(
xk−1

)

p(xk) = ηp
(
zk|xk,

)
p
(
xk

)

end for

Fig. 5. General algorithm for Bayesian filter

Fig. 6 gives a practical application of Bayes-based filter in the system. We
define three states for the game and there are corresponding plays for each state.
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The selection and switch of the plays is up to the result of the filter. Furthermore,
there also exists a score-evaluating mechanism between the plays with the same
attribute, this mechanism is realized by the PlayBook module.

Fig. 6. Bayes Processing Flow Chart

The proposed method has two main features:

– More stable: Compared with the evaluation method that only considers
observation, our evaluator gives a more appropriate analysis of the game
state and helps to reduce the perturbation of the strategy and to strengthen
the continuity of the strategy.

– More flexible: The values of prior probabilities p(xk|uk, xk−1) and p(zk|xk)
is predefined in code according to different team’s characteristics, making
it more convenient and flexible to configure the attacking and defending
strategy.

Play and Finite State Machine. Each play represents a fixed team plan
which consists of many parts, such as applicable conditions, evaluating score,
roles, finite state machine and role tasks, based on CMU’s Skill, Tactics and
Plays architecture [3]. The plays can be considered as a coach in the soccer
game, who assigns different roles to robots at different states.

For a play script, the basic problem is “What should be done by Whom at
What time”. So we develop a novel FSM-based Role Match mechanism. Tradi-
tionally, a state node is described by the execution and switch condition [3]. We
coupled a role match item in each state node to this basis. The new framework
is shown as Fig.7, a role match item comprises several matching groups with
priority, the priority determines the groups’ execution order. Our goal is to find
an optimal solution for every group by Munkres assignment algorithm [4], us-
ing the square of the distance between the current positions of the robots and
expected roles’ target positions as the cost function. In the implementation, we
just consider five roles matching in the scripts, because the goalie corresponds a
fixed robot by default.
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Fig. 7. FSM-based Role Match Framework. A role match item’s syntax is described on
the right: the letter in the string is short for the role’s name in the state node(A-Assister,
L-Leader, S-Special, D-Defender, M-Middle). We offer three modes for matching, No
Match means to keep the role as same as last state, Match Once means match the role
once stepping into this state, and Match Always means do role match every cycle. If a
robot is missing, then ignoring the last role in the item and No Match group always
has a higher priority.

Agent and Behavior Tree. Agent-level is responsible for the behavior plan-
ning such as manipulating ball to proper region, passing ball to a teammate and
scrambling ball from the opponent, when a play-level decision is made. The main
work of agent-level is to select a proper skill and the best target for the execu-
tor in each cycle. In order to make the behavior selection more intelligent and
human-like, we build a behavior tree, which consists of a set of nodes including
control nodes and behavior nodes.

– Control Nodes are utilized to set the logic of how different behavior nodes
should be connected. In our agent behavior tree system, there are mainly
three types of control nodes as shown in Fig.8. The first type is a sequence
node that ensures all of its child nodes will be executed in a deterministic
order if the precondition of the children node is satisfied. For example, as
shown in Fig.8(a), when the precondition of the root node is satisfied, the
step 1 node will be executed. After the step 1 node has been executed and
the precondition of the step 2 node is satisfied, the step 2 node will be
executed. This rule will last until the last child node is executed. The second
type is a loop node which works like a counter. The execution of its child
node depends on two conditions: one is that the precondition of this node is
satisfied; the other is that the control node should have been executed for a
predefined time period as illustrated in Fig.8(b). The third type is a priority
selector node which executes its children nodes actions according to their
priority. When the preconditions of a node with the higher priority have
been satisfied, the existing node will be interrupted and the executing of the
node with the higher priority will be executed, see Fig.8(c). All the nodes
are associated with external preconditions that must be satisfied before the
executing of the node. These preconditions should be updated before the
update of the behavior tree.
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(a) (b) (c)

Fig. 8. Three types of control node: (a)sequence node; (b)loop node; (c)priority selector
node

– Behavior Nodes are simply a set of atomic skills such as going to a specific
position. They are all leaf nodes of a behavior tree and saved in an atom skill
factory. They are also associated with preconditions that should be satisfied
before executing.

Skill. Skill is a set of basic knowledge of actions different robots can perform,
such as how to move to a point, how to get the ball and kick. Some skill will
generate a next target point, which will be passed to the navigation module
for path planning and trajectory generation. Some skill will generate the speed
trajectory for some special behavior such as pulling the ball from an opponent
front. Parameter tuning is always an important work for skill’s performance in
the competition.

3.2 Lua Script Architecture

We introduce a script language into our system to improve the flexibility and
robustness of the system. Here we choose the script programming language Lua
[8]. We have transplanted some repeated logic code to Lua such as positioning
tactic, FSM configuration, Behavior Tree’s generation, while left the complicated
algorithms such as path planning, vision handling in C++ workspace. So the
code is divided into two parts, as illustrated in Fig.9.

Fig. 9. Script architecture with Lua
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Tolua++ is an extended version of tolua, which is a tool to integrate C/C++
code with Lua. At Lua side, we need to access some variables and functions
written in C++. Tolua++ helps us deal with this using a package file. For more
details about tolua++, please refer to its Reference Manual1.

The design advantages of script architecture with Lua are:

– Clear Logic: Like other scripting language, Lua is easy to understand. We
can pay more attention to the logic of the code rather than the syntax, and
it’s really easy for different people to express their tactics by Lua scripts
even if the script’s author has little knowledge on programming.

– No Compiling: In RoboCup Small Size League competition, each team has
only four chances for time out, the total time is 10 minutes. Therefore, it is
very important to rebuild the code as quickly as possible in the limited time.
Usually, a modification in C/C++ code takes about 10-20 seconds, but the
compiling takes 1 minute or more. Lua helps us to solve the problem, we can
just modify our strategy in about 10 seconds, and then do a syntax check by
Lua’s own debug tool, which takes almost no time. So we can spend more
time on modifying logic code rather than compiling and debugging.

– Online Debugging: A play script will be loaded every cycle in our code.
So tuning some parameters or functions such as a FSM’s switch condition
or Behavior Tree’s node action do not need to stop the whole program, the
effects will be shown as soon as the modifications in a script file are saved,
which enables easier and faster strategies adjustment.

3.3 Trajectory Generation with DMPs

We also introduce the Dynamic Movement Primitives (DMPs) framework [9]
into our system to learn some special trajectories from human’s demonstration.
The DMPs presented below is just a basic model for learning a point-to-point
trajectory without considering opponents and kinematic restrictions.

DMPs Framework. Generally speaking, a movement can be described by the
following set of differential equations [11], which can be interpreted as a point
mass attached to a spring and perturbed by an external force which is applied
artificially in demonstration from an intuitive point of view:

τ v̇ = K(g − x) −Dv −K(g − x0)u+Kf(u) (1)

τẋ = v (2)

τu̇ = −αu (3)

where

– x is the position for one DoF of the system,

1 Tolua++ Reference Manual: http://www.codenix.com/~tolua/tolua++.html

http://www.codenix.com/~tolua/tolua++.html
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– v is the velocity for one DoF of the system,
– x0 is the start position,
– g is the goal position,
– K is the spring constant,
– D is the damping term,
– u is the phase corresponding to time which going from 1 towards zero,
– τ is temporal scaling factor,
– α is a pre-defined constant,
– f is a non-liner function which simulates as a extern force.

The equations (1) and (2) are referred as transformation system. And the
differential (3) is called canonical system. Usually, K and D are chosen such
that the transformation system are critically damped. Moreover, τ and α are
chosen such that u is close to zero as time. These equations are time invariant
and make the duration of a movement alter simply by changing τ . In addition,
once the non-linear function f is defined, the shape of the resulting trajectory
will be determined as well. Specifically, f can be defined as

f(u) =

∑N
i wiψi(u)u
∑N

i ψi(u)
, (4)

ψi(u) = exp(−hi(u− ci)
2) (5)

where ψi are Gaussian basis functions with center ci and width hi, N is the total
number of Gaussian basis functions. And wi are the weights need to be learned.
All the equations written above are used for a one dimensional system. Our robot
can be decoupled kinematically into three DoFs: X translational direction, Y
translational direction, W rotational direction, which are shown as Fig.10.

Fig. 10. Three DoFs of robot in SSL

Learning and Executing Trajectory. An important advantage of DMPs is
that a demonstration could be imitated by one-shot learning. In order to learn
from the demonstrated trajectory, we should record the movement x(t) first, then
derivative v(t) and v̇(t) from x(t) in each time step, t = 0, ..., T . By combining
the transformation system and canonical system together, ftarget(u) is obtained:

ftarget(u) =
τ v̇ +Dv

K
+ (g − x0)u− (g − x), (6)
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where x0 = x(0) and g = x(T ). We can find the weights wi in (4) by minimizing
the error criterion J =

∑
(ftarget(u)−f(u))2, which is a linear regression problem

and can be solved efficiently [11]. Once wi is determined for a demonstrated
movement, we can generate trajectory with a new goal position by resetting
g = gnew, x0 = xcurrent and t = 0. After this setup procedure, we could adjust
τ to determine the duration of the movement.

4 Experiment Results

4.1 Play Script Writing in Lua

Fig.11 is an play script used for indirect kick in the frontcourt.

1: firstState = “goReady”,
2: name = “Ref FrontKickV8”,
3: attribute = “attack”,
4: timeout = 200,
5: [“goReady”] = {
6: match = “{A}{L}[SMD]”,
7: switch = function()
8: if reachTarget(“L”) then return “pass” end
9: end,
10: A = getBall(dir1), L = goMultiPos(posList),
11: S = rush(pos1), M = rush(pos2),
12: D = rush(pos3), G = goalie() },
13: [“pass”] = {
14: match = “{AL}[SMD]”,
15: switch = function()
16: if kickBall(“A”) then return “kick” end
17: end,
18: A = chip(shootPos), L = receive(shootPos),
19: S = middle(), M = leftBack(),
20: D = rightBack(), G = goalie() },
21: [“kick”] = {
22: match = “{ALSMD}”,
23: switch = function()
24: if kickBall(“L”) then return “finish” end
25: end,
26: A = goAssist(), L = shoot(),
27: S = middle(), M = leftBack(),
28: D = rightBack(), G = goalie() }

(a)
(b)

Fig. 11. An example of indirect free kick in frontcourt: (a)Lua script; (b)positions of
robots in every state. In the script (a), the basic settings are from line 1 to line 4. Then
we define the specific states in this play. For example, the state goReady comprises a
role match item (line 6), switch condition (line 7-9) and execution (line 10-12).



102 Y. Zhao et al.

4.2 Learning from Demonstration by DMPs

In the DMPs’ experiment, we evaluated how well the DMPs’ formulations gen-
eralize a quick turning and breaking through movement, as shown in Fig.12(a).
First, we collected the movements in the three DoFs using the cameras mounted
over the field. In the second step, we used DMPs method to train the data and
got wi for each DoF. Finally, we reset the DMPs formulas and adapted to a
slightly nearer target, see Fig.12(b). In this experiment, the robot successfully
moved to new positions which are at most 0.7m away from the original target,
and the duration of the movement is about 1.5 second. Note that in the practical
3-DoFs motor system, every DoF sets the transformation system independently,
but they share the canonical system as they are coordinated, the results of the
motion reproduction in different DoF is shown as Fig.12(c) and Fig.12(d).

(a) (b)

(c) (d)

Fig. 12. Turning and breaking through example: (a)demonstration; (b)generalization
to a slightly nearer target; (c)reproduction and generalization to new goals in X-Y
panel; (d)reproduction and generalization to new goals in W rotational direction

In addition to the basic DMPs presented in section 3.3, we also try to add
a dynamic potential field item to the DMPs’ formula as in [12] for the purpose
of obstacle avoidance. Moreover, we can change the target velocity of the move-
ment while maintaining the overall duration and shape by developing several
extensions and modifications to this approach as in [13].

5 Conclusion

In this year, we paid more attentions to the intelligent control system. First,
Bayesian evaluation method and a role match framework based on STP [3] are
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proposed to make stable and flexible strategy decision. Second, we develop be-
havior tree for action connection. The FSM and BT both can be configured
with Lua scripts. Finally, the DMPs are introduced to help generate human-like
trajectory. These efforts make ZJUNlict score 43 goals and concede 2 goals in
RoboCup2013. In next year, we will continue to focus on multi-agent coopera-
tion and the trajectory generation model, also we hope to use 3D physics engine
[14] to help simulate and predict common situations encountered in the game.
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