Skip to main content

The National BioResource Project in Japan

  • Chapter
  • First Online:
Book cover The Lotus japonicus Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1065 Accesses

Abstract

The objective of the National BioResource Project (NBRP) in Japan is to collect, conserve, and distribute biological materials for life sciences research. The project consortium of 28 core facilities of animal, plant, microorganisms, and DNA resources, and an information center. NBRP Lotus and Glycine aims to support the development of legume research through the collection, conservation, and distribution of these bioresources. Lotus japonicus is a perennial legume that grows naturally throughout Japan and is widely used as a model plant for legumes because of such advantages as its small genome size and short life cycle. Soybean (Glycine max) has been cultivated as an important crop since ancient times, and numerous research programs have generated a large amount of basic research information and valuable genetic resources for this crop. We have also developed “LegumeBase” a specialized database for the genera Lotus and Glycine and are maintaining this database as a part of the NBRP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akashi R, Hoffmann-Tsay S-S, Hoffmann F (1998) Selection of a super-growing legume root culture that permits controlled switching between root cloning and direct embryogenesis. Theor Appl Genet 96:758–764

    Article  CAS  Google Scholar 

  • Akashi R, Kawano T, Hashiguchi M et al (2003) Super roots in Lotus corniculatus: A unique tissue culture and regeneration system in a legume species. Plant Soil 255:27–33

    Article  CAS  Google Scholar 

  • Aoki K, Yano K, Suzuki A et al (2010) Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genom 11:210

    Article  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S et al (2000) Generation of 7137 non-redundant expressed sequence tags from a Legume, Lotus japonicus. DNA Res 7:127–130

    Article  PubMed  Google Scholar 

  • Asamizu E, Kato T, Sato S et al (2003) Structural analysis of a Lotus japonicus genome. IV. Sequence features and mapping of seventy-three TAC clones which cover the 7.5 mb regions of the genome. DNA Res 10:115–122

    Article  PubMed  CAS  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S et al (2004) Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Mol Biol 54:405–514

    Article  PubMed  Google Scholar 

  • Charpentier M, Oldroyd G (2010) How close are we to nitrogen-fixing cereals? Curr Opin Plant Biol 13:556–564

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131(3):900–910

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fukai E, Soyano T, Umehara Y et al (2012) Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J 69:720–730

    Article  PubMed  CAS  Google Scholar 

  • Gondo T, Sato S, Okumura K et al (2007) Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome 50:627–637

    Article  PubMed  Google Scholar 

  • Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496

    Article  Google Scholar 

  • Hayashi M, Miyahara A, Sato S et al (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8:301–310

    Article  PubMed  CAS  Google Scholar 

  • Himuro Y, Tanaka H, Hashiguchi M et al (2011) FOX-superroots of Lotus corniculatus, overexpressing Arabidopsis full-length cDNA, show stable variations in morphological traits. J Plant Physiol 168:181–187

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Miyamoto J, Mori Y et al (2000) Genome and chromosome dimensions of Lotus japonicus. J Plant Res 113:435–442

    Article  Google Scholar 

  • Imaizumi R, Sato S, Kameya N et al (2005) Activation tagging approach in a model legume, Lotus japonicus. J Plant Res 118:391–399

    Article  PubMed  Google Scholar 

  • Jian B, Hou W, Wu C et al (2009) Agrobacterium rhizogenes-mediated transformation of superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol 9:78

    Google Scholar 

  • Kai S, Tanaka H, Hashiguchi M et al (2010) Analysis of genetic diversity and morphological traits of Japanese Lotus japonicus for establishment of a core collection. Breed Sci 60(4):36–446

    Article  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7(6):331–338

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Asamizu E, Kato T et al (2003) Structural analysis of a Lotus japonicus genome. III. Sequence features and mapping of sixty-two TAC clones which cover the 6.7 Mb regions of the genome. DNA Res 10:27–33

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Sato S, Nakamura Y et al (2003) Structural analysis of a Lotus japonicus genome. V. Sequence features and mapping of sixty-four TAC clones which cover the 6.4 mb regions of the genome. DNA Res 10:277–285

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi M (2000) Lotus japonicus ‘Miyakojima’ MG-20’: An early-flowering accession suitable for indoor handling. J Plant Res 133:507–509

    Article  Google Scholar 

  • Kawaguchi M, Motomura T, Imaizumi-Anraku H et al (2001) Providing the basis for genomics in Lotus japonicus: the accessions Miyakojima and Gifu are appropriate crossing partners for genetic analyses. Mol Genet Genomics 266(2):157–166

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi M, Imaizumi-Anraku H, Koiwa H et al (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15:17–26

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi M, Andrea PH, Koji Y et al (2005) Lotus burttii takes a position of the third corner in the lotus molecular genetics triangle. DNA Res 12:69–77

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh S, Nagata S et al (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kurata N, Satoh H, Kitano H et al (2010) NBRP, National Bioresource Project of Japan and plant bioresource management. Breed Sci 60:461–468

    Article  Google Scholar 

  • Maekawa T, Kusakabe M, Shimoda Y et al (2008) Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in Lotus japonicus. Mol Plant Microb Interact 21:375–382

    Article  CAS  Google Scholar 

  • Matsumoto T, Tanaka T, Sakai H et al (2011) Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. Plant Physiol 156:20–28

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakagawa T, Kaku H, Shimoda Y et al (2011) From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis. Plant J 65:169–180

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Asamizu E et al (2002) Structural analysis of a Lotus japonicus genome. II. Sequence features and mapping of sixty-five TAC clones which cover the 6.5-mb regions of the genome. DNA Res 9:63–70

    Article  PubMed  CAS  Google Scholar 

  • Novák K (2010) On the efficiency of legume supernodulating mutants. Ann Appl Biol 157:321–342

    Article  Google Scholar 

  • Ogihara Y, Mochida K, Kawaura K et al (2004) Construction of a full-length cDNA library from young spikelets of hexaploid wheat and its characterization by large-scale sequencing of expressed sequence tags. Genes Genet Syst 79:227–232

    Article  PubMed  Google Scholar 

  • Pajuelo E, Stougaard J (2005) Lotus japonicus as a model system. In: Márquez AJ (ed) Lotus japonicus Handbook. Springer, Netherlands, pp 3–24

    Google Scholar 

  • Popp C, Ott T (2011) Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr Opin Plant Biol 14:1–10

    Article  Google Scholar 

  • Sandal N, Krusell L, Radutoiu S et al (2002) A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161:1673–1683

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sandal N, Petersen TR, Murray J et al (2009) Genetics of Symbiosis in Lotus japonicus: recombinant inbred lines, comparative genetic maps, and map position of 35 symbiotic loci. Mol Plant Microb Interact 19:80–91

    Article  Google Scholar 

  • Sandal N, Jin H, Rodriguez-Navarro DN et al (2012) A set of Lotus japonicus Gifu × Lotus burttii recombinant inbred lines facilitates map-based cloning and QTL mapping. DNA Res 19:317–323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sato S, Kaneko T, Nakamura Y et al (2001) Structural analysis of a Lotus japonicus genome. I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 Mb regions of the genome. DNA Res 8:311–318

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Asamizu E et al (2007) Genome sequencing and genome resources in model legumes. Plant Physiol 144:588–593

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Seki M, Carninci P, Nishiyama Y et al (1998) High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J. 15:707–720

    Article  PubMed  CAS  Google Scholar 

  • Shimoda Y, Mitsui H, Kamimatsuse H et al (2008) Construction of signature-tagged mutant library in Mesorhizobium loti as a powerful tool for functional genomics. DNA Res 15:297–308

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Soderlund C, Descour A, Kudrna D et al (2009) Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genet 5:e1000740

    Article  PubMed  PubMed Central  Google Scholar 

  • Stougaard J, Beuselink PR (1996) Registration of GIFU B-129-S9 Lotus japonicus germplasm. Crop Sci 36:476

    Article  Google Scholar 

  • Suginobu K, Suzuki S, Komatsu T (1988) Evaluation of the characteristics in Miyakogusa (Lotus corniculatus L. var. japonicus Regel) 3. Characteristics of local strains collected from different regions in Japan. J Jpn Grassl Sci 34:13–19 (in Japanese with English abstract)

    Google Scholar 

  • Suzuki A, Suriyagoda L, Shigeyama T et al (2011) Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling. Proc Natl Acad Sci USA 108:16837–16842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sz-Borso O, Somaroo BH, Grant WF (1972) A new diploid species of Lotus japonicus (Leguminosae) in Pakistan. Can J Bot 50:1865–1870

    Article  Google Scholar 

  • Szczyglowski K, Shaw RS, Wopereis J et al (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 11:684–697

    Article  CAS  Google Scholar 

  • Tanaka H, Toyama J, Hashiguchi M et al (2008) Transgenic superroots of Lotus corniculatus can be regenerated from superroot-derived leaves following Agrobacterium-mediated transformation. J Plant Physiol 165:1313–1316

    Article  PubMed  CAS  Google Scholar 

  • Thapanapongworakul N, Nomura M, Dao TV et al (2010) 3-Phosphoglycerate dehydrogenase in Mesorhizobioum loti is essential for maintaining symbiotic nitrogen fixation of Lotus japonicus root nodules. Plant Soil 336:233–240

    Article  CAS  Google Scholar 

  • Tsubokura Y, Onda R, Sato S et al (2008) Characterization of soybean genome based on synteny analysis with Lotus japonicus. Breed Sci 58:157–167

    Article  CAS  Google Scholar 

  • Umezawa T, Sakurai T, Totoki Y et al (2008) Sequencing and analysis of approximately 40,000 Soybean cDNA clones from a full-length-enriched cDNA library. DNA Res 15:333–346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X, Sato S, Tabata S et al (2008) A high-density linkage map of Lotus japonicus based on AFLP and SSR markers. DNA Res 15:323–332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weigel D, Ahn JH, Blázquez MA et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Google Scholar 

  • Yamazaki Y, Akashi R, Banno Y et al (2010) NBRP databases: databases of biological resources in Japan. Nucleic Acids Res 38:D26–D32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National BioResource Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan. We thank Dr. Yamazaki and the staff of the Genetic Informatics Laboratory at the National Institute of Genetics (NIG) for constructing and maintaining “LegumeBase.” In addition, we profoundly thank the Lotus and Glycine research communities for their cooperation and support of our project, NBRP in Lotus and Glycine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Akashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hashiguchi, M., Akashi, R. (2014). The National BioResource Project in Japan. In: Tabata, S., Stougaard, J. (eds) The Lotus japonicus Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44270-8_22

Download citation

Publish with us

Policies and ethics