Skip to main content

The Structures and Evolution of Snake Toxins of the Three-Finger Folding Type

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Because of their impact on human health, snake venoms have been generally the subject of a great deal of attention and several recent reviews describe the properties of their components.1–3 Many of these have enzymatic activity and are either related to digestive proteins such as phospholipases, proteases and nucleases4 or to trypsin inhibitor polypeptides such as the dendrotoxins.5 This has led to the hypothesis that the venom glands of snakes may have been shaped after the pancreas, secreting at first enzymes that later turned into toxic substances.4 The most studied toxins are those found in Elapidae and Hydrophidae snake venoms and several hundred amino acid sequences as well as tens of three-dimensional structures are currently known. One of the best characterized group is the so-called three-finger snake toxins. These proteins, with molecular weights close to 7,000 Da, share a three-dimensional fold first described for erabutoxin b.6,7 The best known members of this group are the short (59–62 amino acids, 4 disulfide bridges), and the long (66–80 amino acids, 4 or 5 disulfide bridges) α-neurotoxins. These proteins bind to the acetylcholine receptor located on the post-synaptic membrane thereby blocking the transformation of the chemical signal transmitted by acetylcholine into a depolarizing one.1 All Elapidae and Hydrophidae venoms seem to contain long neurotoxins and most of them have short neurotoxins (Table 14.1). Other three-finger molecules, devoid of post-synaptic neurotoxic activity, have been purified from cobras and mambas.8–12

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endo T, Tamiya N. Structure-function relationships of postsynaptic neurotoxins from snake venom. In: Harvey AL, ed. Snake toxins. Pergamon Press, 1991: 165–222.

    Google Scholar 

  2. Dufton MJ, Hider RC. The structure and pharmacology of elapid cytotoxins. In: Harvey AL, ed. Snake toxins. Pergamon Press, 1991: 259–302.

    Google Scholar 

  3. Rees B, Bilwes A. Three-dimensional structures of neurotoxins and cardiotoxins. Chem Res Toxicol 1993; 6: 385–406.

    Article  PubMed  CAS  Google Scholar 

  4. Kochva E. The origin of snakes and evolution of the venom apparatus. Toxicon 1987; 25: 65–106.

    Article  PubMed  CAS  Google Scholar 

  5. Harvey AL, Anderson AJ. Dentrotoxins: snake toxins that block potassium channels and facilitate neurotransmitter release. In: Harvey AL, ed. Snake Toxins. Pergamon Press, 1991: 131–64.

    Google Scholar 

  6. Low B, Preston HS, Sato A et al. Three dimensional structure of erabutoxin b neurotoxic protein: inhibitor of acetylcholine receptor. Proc Natl Acad Sci USA 1976; 73: 2991–94.

    Article  PubMed  CAS  Google Scholar 

  7. Tsernoglou D, Petsko GA. The crystal structure of a postsynaptic neurotoxin from sea snake at 2.2 A resolution. FEBS Letters 1976; 68: 1–4.

    Article  PubMed  CAS  Google Scholar 

  8. Joubert F, Taljaard N. The complete primary structure of toxin C from Dendroaspis polylepis polylepis (black mamba) venom. S Afr J Chem 1978; 31: 107–10.

    CAS  Google Scholar 

  9. Rodriguez-Ithurralde D, Silveira L, Barbeito L et al. Fasciculin, powerful anticholinesterase polypeptide from Dendroaspis augusticeps venom. Neurochem Int 1983; 5: 267–74.

    Article  PubMed  CAS  Google Scholar 

  10. Karlsson E, Mbuga PM, Rodriguez-Ithuralde D. Fasciculins, anticholinesterase toxins from the venom of the green mamba Dendroaspis augusticeps. J Physiol 1984; 79: 232–40.

    CAS  Google Scholar 

  11. Cervenanski C, Engström A, Karlsson E. Study of structure-activity relationship of fasciculin I. Modification of amino groups. Toxicon 1991; 29: 1163.

    Google Scholar 

  12. Watanabe TX, Itahara Y, Kuroda H et al. Smooth muscle relaxing and hypotensive activities of synthetic calciseptine and homologous snake venom peptide FS2. Jap J Pharmacol 1995; 68: 305–13.

    Article  PubMed  CAS  Google Scholar 

  13. Bougis P, Rochat H, Piéroni G et al. Penetration of phospholipid mono-layers by cardiotoxins. Biochemistry 1981; 20: 4915–20.

    Article  PubMed  CAS  Google Scholar 

  14. Harvey AL. Cardiotoxins from cobra venoms: possible mechanisms of action. J Toxicol-Toxin Reviews 1985; 4: 41–49.

    Article  CAS  Google Scholar 

  15. Sutcliffe MJ, Jaseja M, Hyde EI et al. Three-dimensional structure of the RGD-containing neurotoxin homologue, dendroaspin. Nature Struct Biol 1994; 1: 802–07.

    Article  PubMed  CAS  Google Scholar 

  16. Saludjian P, Prange T, Navaza J et al. Structure determination of a dimeric form of erabutoxin-b, crystallized from a thiocyanate solution. Acta Crystallogr 1992; B48: 520–31.

    Article  Google Scholar 

  17. leDu MH, Housset D, Marchot P et al. Crystal structure of fasciculin 2 from green mamba snake venom: evidence for unusual loop flexibility. Acta Crystallogr D51; in press.

    Google Scholar 

  18. Albrand JP, Blackledge MJ, Pascaud F et al. Nmr and restrained molecular dynamics study of the three-dimensional solution structure of toxin fs2, a specific blocker of the 1-type calcium channel, isolated from black mamba venom. Biochemistry 1995; 34: 5923–37.

    Article  PubMed  CAS  Google Scholar 

  19. le Du MH, Marchot P, Bougis PE et al. 1.9 A resolution structure of fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom. J Biol Chem 1992; 267: 22122–30.

    Google Scholar 

  20. Erickson BW. Sequence homology of snake, scorpion, and bee toxins. In: Rosenberg P, ed. Toxins-animal, plant and microbial. Proceedings of the 5th Internat. Symp. on Animal Plant and Microbial Toxins-San José, Costa Rica. Pergamon Press 1976: 1071–86.

    Google Scholar 

  21. Strydom DJ. The Evolution of Toxins Found in Snake Venoms. In: Lee CV ed. Snake Venoms, Handbook of Experimental Pharmacology. Berlin: Springer-Verlag, 1979: 52, 258–75.

    Chapter  Google Scholar 

  22. Ivanov Ch P, Ivanov OCH. The evolution and ancestors of toxic proteins. Toxicon 1979; 17: 205–20.

    Article  PubMed  CAS  Google Scholar 

  23. van Tilbeurgh H, Sarda L, Verger R et al. Structure of the pancreatic lipase-procolipase complex. Nature 1992; 359: 159–62.

    Article  PubMed  Google Scholar 

  24. Yang CC. Chemistry and evolution of toxins in snake venoms. Toxicon 1974; 12: 1–43.

    Article  PubMed  CAS  Google Scholar 

  25. Fletcher CM, Harrison RA, Lachmann PJ et al. Structure of a soluble, glycosylated form of the human complement regulatory protein CD59. Structure 1994; 2: 185–99.

    Article  PubMed  CAS  Google Scholar 

  26. Kieffer B, Driscoll PC, Campbell ID et al. Three-dimensional solution structure of the extracellular region of the complement regulatory protein CD59, a new cell-surface protein domain related to snake venom neuro-toxins. Biochemistry 1994; 33: 4474–82.

    Article  Google Scholar 

  27. Fletcher CM, Harrison RA, Lachmann PJ et al. Sequence-specific ‘H-NMR assignments and folding topology of human CD59. Protein Sci 1993; 2: 2015–27.

    Article  PubMed  CAS  Google Scholar 

  28. Kolbe HVJ, Huber A, Cordier P et al. Xenoxins, a family of peptides from dorsal gland secretion of Xenopus laevis related to snake venom cytotoxins and neurotoxins. J Biol Chem 1993; 268: 16458–64.

    PubMed  CAS  Google Scholar 

  29. Williams AF, Tse AGD, Gagnon J. Squid glycoproteins with structural similarities to Thy-1 and Ly-6 antigens. Immunogenetics 1988; 27: 265–72.

    Article  PubMed  CAS  Google Scholar 

  30. Tamiya N, Yagi T. Nondivergence theory of evolution: sequence comparison of some proteins from snakes and bacteria. J Biochem 1985; 98: 289–303.

    PubMed  CAS  Google Scholar 

  31. Dufton MJ. Classification of elapid snake neurotoxins and cytotoxins according to chain length: evolutionary implications. J Mol Evol 1984; 20: 128–34.

    Article  PubMed  CAS  Google Scholar 

  32. Dufton MJ, Harvey AL. The long and the short of snake toxins. TIPS 1989; 10: 258–59.

    PubMed  CAS  Google Scholar 

  33. Johnson MS, Sali A, Blundell TL. Phylogenies from structural comparisons. Methods in Enzymology 1988; 183: 670–89.

    Article  Google Scholar 

  34. Corfield PWR, Lee T-J, Low BW. The crystal structure of erabutoxin a at 2.0 angstroms resolution J Biol Chem 1989; 264: 9239–42.

    CAS  Google Scholar 

  35. Smith JL, Corfield PWR, Hendrickson WA et al. Refinement at 1.4 angstroms resolution of a model of erabutoxin b. Treatment of ordered solvent and discrete disorder. Acta Crystallog 1988; A44: 357–68.

    Article  Google Scholar 

  36. Hatanaka H, Oka M, Kohda D et al. Tertiary structure of erabutoxin b in aqueous solution elucidated by two-dimensional nuclear magnetic resonance. J Mol Biol 1994 240: 155–66.

    Article  PubMed  CAS  Google Scholar 

  37. Labhardt AM, Hunziker-Kwik EH, Wüthrich K. Secondary structure determination for a-neurotoxin from Dendroaspis polylepis polylepis based on sequence-specific ‘H-nuclear-magnetic-resonance assignments. Eur J Biochem 1988; 177: 295–305.

    Article  PubMed  CAS  Google Scholar 

  38. Brown LR, Wüthrich K. Nuclear magnetic resonance solution structure of the a-neurotoxin from the black mamba (Dendroaspis polylepis polylepis). J Mol Biol 1992; 227: 1118–35.

    Article  PubMed  CAS  Google Scholar 

  39. Zinn-Justin S, Roumestand C, Gilquin B et al. Three-dimensional solution structure of a curaremimetic toxin from Naja nigricollis venom: a proton NMR and molecular modeling study. Biochemistry 1992; 31: 11335–47.

    Article  PubMed  CAS  Google Scholar 

  40. Nickitenko AV, Michailov AM, Betzel C et al. Three-dimensional structure of neurotoxin-1 from Naja naja oxiana venom at 1.9 A resolution. FEBS 1993; 320: 111–17.

    Article  CAS  Google Scholar 

  41. Golovanov P, Lomize AL, Arseniev AS et al. Two-dimensional ‘H-NMR study of the spatial structure of neurotoxin II from Naja naja oxiana. Eur J Biochem 1993; 213: 1213–23.

    Article  PubMed  CAS  Google Scholar 

  42. Yu C, Lee C-S, Chuang, LC et al. Two-dimensional NMR studies and secondary structure of cobrotoxin in aqueous solution. Eur J Biochem 1990; 193: 789–99.

    Article  PubMed  CAS  Google Scholar 

  43. Yu C, Bhaskaran R, Chuang LC et al. Solution conformation of cobrotoxin: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry 1993; 32: 2131.

    Google Scholar 

  44. Jahnke W, Mierke DF, Beress L et al. Structure of cobra cardiotoxin CTXI as derived from nuclear magnetic resonance spectroscopy and distance geometry calculations. J Mol Biol 1994; 240: 445.

    Article  PubMed  CAS  Google Scholar 

  45. Bhaskaran R, Huang CC, Tsai YC et al. Cardiotoxin II from taiwan cobra venom, Naja naja atra: structure in solution and comparision among homologous cardiotoxins. J Biol Chem 1994; 269: 23500–08.

    PubMed  CAS  Google Scholar 

  46. Steinmetz WE, Bougis PE, Rochat H et al. ‘H nuclear-magnetic-resonance studies of the three-dimensional structure of the cardiotoxin CTX IIb from Naja mossambica mossambica in aqueous solution and comparison with the crystal structures of homologous toxins. Eur J Biochem 1988; 172: 101–16.

    Article  PubMed  CAS  Google Scholar 

  47. O’Connell JF, Bougis PE, Wüthrich K. Determination of the nuclear magnetic resonance solution structure of cardiotoxin CTX IIb from Naja mossambica mossambica. Eur J Biochem 1993; 213: 891–900.

    Article  PubMed  Google Scholar 

  48. Bhaskaran R., Huang CC, Chang KD, Yu C. Cardiotoxin III from taiwan cobra (Naja naja atra): determination of structure in solution and comparison with short neurotoxins. J Mol Biol 1994; 235: 1291–301.

    Article  PubMed  CAS  Google Scholar 

  49. Singhal AK, Chien K-Y, Wu W-G et al. The solution structure of cardiotoxin V from Naja naja atra. Biochemistry 1993; 32: 8036–44.

    Article  PubMed  CAS  Google Scholar 

  50. Rees B, Samama JP, Thierry JC et al. Crystal structure of a snake venom cardiotoxin. Proc Natl Acad Sci USA 1987; 84: 3132–38.

    Article  PubMed  CAS  Google Scholar 

  51. Rees B, Bilwes A, Samama JP et al. Cardiotoxin V411 from Naja mossambica mossambica: the refined crystal structure. J Mol Biol 1990 214: 281–97.

    Article  PubMed  CAS  Google Scholar 

  52. Gilquin B, Roumestand C, Zinn-Justin S et al. Refined three-dimensional solution structure of a snake cardiotoxin: analysis of the side-chain organisation suggests the existence of a possible phospholipid binding site. Biopolymers 1993; 33: 1659–75.

    Article  PubMed  CAS  Google Scholar 

  53. Bilwes A, Rees B, Moras D et al. X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. J Mol Biol 1994; 239: 122–36.

    Article  PubMed  CAS  Google Scholar 

  54. Betzel C, Lange G, Pal GP et al. The refined crystal structure of a-cobratoxin from Naja naja siamensis at 2.4 A resolution. J Biol Chem 1991; 266: 21530–36.

    PubMed  CAS  Google Scholar 

  55. Dewan JC, Grant GA, Sacchettini JC. Crystal structure of kappabungarotoxin at 2.3-angstrom resolution. Biochemistry 1994; 33: 13147.

    Article  PubMed  CAS  Google Scholar 

  56. Oswald RE, Sutcliffe MJ, Bamberger M et al. Solution structure of neuronal bungarotoxin determined by two-dimensional NMR spectroscopy: sequence-specific assignments, secondary structure, and dimer formation. Biochemistry 1991; 30: 4901–09.

    Article  PubMed  CAS  Google Scholar 

  57. Sutcliffe MJ, Dobson CM, Oswald RE. Solution structure of neuronal bungarotoxin determined by two-dimensional nmr spectroscopy: calculation of tertiary structure using systematic homologous model building, dynamical simulated annealing, and restrained molecular dynamics. Biochemistry 1992; 31: 2962–70.

    Article  PubMed  CAS  Google Scholar 

  58. Love RA, Stroud RM. The crystal structure of a-bungarotoxin at 2.5 A resolution: relation to solution structure and binding to acetylcholine receptor. Protein Engineering, 1986; 1: 37–46.

    Article  PubMed  CAS  Google Scholar 

  59. Basus VJ, Song G, Hawrot E. Nmr solution structure of an alphabungarotoxin(slash)nicotinic receptor peptide complex. Biochemistry 1993; 32: 12290–298.

    Article  PubMed  CAS  Google Scholar 

  60. Kraulis PJ. Molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 1991; 24: 946–50.

    Article  Google Scholar 

  61. Satow Y, Cohen GH, Padlan EA et al. Phosphocholine binding immunoglobulin Fab McPC603: An x-ray diffraction study at 2.7 A. j Mol Biol 1986; 190: 593–604.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Housset, D., Fontecilla-Camps, J.C. (1996). The Structures and Evolution of Snake Toxins of the Three-Finger Folding Type. In: Protein Toxin Structure. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22352-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22352-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22354-3

  • Online ISBN: 978-3-662-22352-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics