Skip to main content

Simple Elements and Linelets for Incompressible Flows

  • Chapter

Summary

The current trends for the simulation of large-scale incompressible flow fields using finite elements are discussed. The main items are: a) the use of simple elements through stabilization and analogy with LBB-satisfying elements, and b) the development of fast solvers for general grids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Löhner — Theoretische und Numerische Untersuchungen zur Gemischt-Hybriden Elementformulierung der Navier-Stokes-Gleichungen für Stationäre und Instationäre Strömungen; MSc Thesis, TU Braunschweig (1982).

    Google Scholar 

  2. M.D. Gunzburger — Mathematical Aspects of Finite Element Methods for Incompressible Viscous Flows. Finite Elements: Theory and Application (Dwoyer, Hussaini and Voigt eds.), Springer Verlag, 124–150, (1987).

    Google Scholar 

  3. Fortin — Simple Continuous Pressule Elements for Two- and Three- Dimensional Incompressible Flows; Comp. Meth. Appl. Mech. Eng. 62, 47–69 (1987).

    Google Scholar 

  4. O.C. Zienkiewicz and R. Taylor — On Reduced Integration; Rep INME, Swansea, (1982).

    Google Scholar 

  5. D.W. Kelly, S. Nakazawa, O.C. Zienkiewicz and J.C. Heinrich — A Note on Anisotropic Balancing Dissipation in Finite Element Approximation to Convection Diffusion Problems; Int. J. Num. Meth. Eng. 15, 1705–1711 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  6. A.N. Brooks and T.J.R. Hughes — Streamline Upwind/Petrov Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations; Comp. Meth. Appl. Mech. Eng. 32, 199–259 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Donea — A Taylor Galerkin Method for Convective Transport Problems; Int. J. Num. Meth. Eng. 20, 101–119 (1984).

    Article  MATH  Google Scholar 

  8. R. Löhner, K. Morgan and O.C. Zienkiewicz — The Solution of Nonlinear Systems of Hyperbolic Equations by the Finite Element Method; Int. J. Num. Meth. Fluids 4, 1043–1063 (1984).

    Article  MATH  Google Scholar 

  9. R. Löhner, K. Morgan and O.C. Zienkiewicz — An Adaptive Finite Element Procedure for High Speed Flows; Comp. Meth. Appl. Mech. Eng. 51, 441–465 (1985).

    Article  MATH  Google Scholar 

  10. R. Löhner, K. Morgan, J. Peraire and O.C. Zienkiewicz — Finite Element Methods for High Speed Flows; AIAA-85–1531-CP (1985).

    Google Scholar 

  11. A. Jameson, W. Schmidt and E. Türkei — Numerical Solution of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes; AIAA-Paper 81–1259 (1981).

    Google Scholar 

  12. R. Löhner — An Adaptive Finite Element Scheme for Transient Problems in CFD; Comp. Meth. Appl. Mech. Eng. 61, 323–338 (1987).

    Article  MATH  Google Scholar 

  13. J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz — Adaptive Remeshing for Compressible Flow Computations; J. Comp. Phys. 72, 449–466 (1987).

    Article  MATH  Google Scholar 

  14. J. Peraire, J. Peiro, L. Formaggia, K. Morgan and O.C. Zienkiewicz — Finite Element Euler Computations in Three Dimensions; AIAA-88–0032 (1988).

    Google Scholar 

  15. R. Löhner and P. Parikh — Three-Dimensional Grid Generation by the Advancing Front Method. Int. J. Num. Meth. Fluids 8, 1135–1149, (1988).

    Article  MATH  Google Scholar 

  16. T.J. Baker — Developments and Trends in Three-Dimensional Mesh Generation; Appl. Num. Math. 5, 275–304 (1989).

    Article  MATH  Google Scholar 

  17. S. Yoon, D. Kwak and L. Chang — LU-SGS Implicit Algorithm for Three-Dimensional Incompressible Navier-Stokes Equations with Source Term; AIAA 89–1964-CP (1989).

    Google Scholar 

  18. F. Thomasset — Implementation of Finite Element Methods for Navier-Stokes Equations p.87 ff, Springer-Verlag (1981).

    Book  MATH  Google Scholar 

  19. R. Löhner — A Fast Finite Element Solver for Incompressible Flows; AIAA-90–0398 (1990).

    Google Scholar 

  20. R. Löhner and K. Morgan — An Unstructured Multigrid Method for Elliptic Problems; Int. J. Num. Meth. Eng. 24, 101–115 (1987).

    Article  MATH  Google Scholar 

  21. D. Mavriplis — Euler and Navier-Stokes Computations for Two-Dimensional Geometries Using Unstructured Meshes; ICASE Rep. 90–3 (1990).

    Google Scholar 

  22. W.R. Briley and H. McDonald — Solution of the Multi-Dimensional Compressible Navier-Stokes Equations by a Generalized Implicit Method. J. Comp. Phys. 21, 372–397 (1977).

    Article  MathSciNet  Google Scholar 

  23. R.M. Beam and R.F. Warming — An Implicit Finite Difference Algorithm for Hyperbolic Systess in Conservation-Law Form. J. Comp. Phys. 22, 87–110 (1978).

    Article  MathSciNet  Google Scholar 

  24. V. Venkatakrishnan and D. Mavriplis — Implicit Solvers for Unstructured Meshes; NASA Ames Rep. RNR-91–016 (1991).

    Google Scholar 

  25. E. Cuthill and J. McKee — Reducing the Bandwidth of Sparse Symmetric Matrices; Proc. ACM Nat. Conf., New York 1969, 157–172 (1969).

    Google Scholar 

  26. O. Hassan, K. Morgan and J. Peraire — An Implicit Finite Element Method for High Speed Flows. AIAA-90–0402 (1990).

    Google Scholar 

  27. M. Hestenes and E. Stiefel — Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Nat Bur. Standards 49, 409–436 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  28. O.C. Zienkiewicz — The Finite Element Method; McGraw Hill (1982).

    Google Scholar 

  29. H. Schlichting — Boundary Layer Theory. McGraw-Hill (1979).

    MATH  Google Scholar 

  30. M.L. Mansour and A. Hamed — Implicit Solution of the Incompressible Navier-Stokes Equations on a Non-Staggered Grid; J. Comp. Phys. 86, 147–167 (1990).

    Article  MATH  Google Scholar 

  31. B.S. Baldwin and H. Lomax — Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows AIAA 78–257 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Oñate J. Periaux A. Samuelsson

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löhner, R. (1991). Simple Elements and Linelets for Incompressible Flows. In: Oñate, E., Periaux, J., Samuelsson, A. (eds) The finite element method in the 1990’s. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10326-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10326-5_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10328-9

  • Online ISBN: 978-3-662-10326-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics