Skip to main content

An Assessment of the Cosserat Continuum through the Finite Element Simulation of a Strain Localisation Problem

  • Chapter
The finite element method in the 1990’s

Abstract

As a panacea for serious limitations exhibited by classical continuum models in the post-instability region, the generalization of standard J2-elastoplasticity within the Cosserat continuum is introduced. Constitutive equations are briefly reviewed and a computational framework is modified to accomodate for additional degrees of freedom. Consistent linearization of the field equations is performed which leads to a fully implicit scheme which preserves asymptotic quadratic convergence of the Newton-Raphson method. Through the finite element simulation of the slope localisation problem for an elasto-plastic softening material the Cosserat continuum model is critically assessed against the classical continuum model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Noll, ‘A mathematical theory of the mechanical behavior of continuous media’ , Arch. Rat. Mech. Anal., 2, 198–226 (1958)

    Article  MathSciNet  Google Scholar 

  2. V. Tvergaard, A. Needleman and K. K. Lo, ‘Flow localization in the planestrain tensile test’ , J. Mech. Phys. Solids, 29, 115–142 (1981)

    Article  MATH  Google Scholar 

  3. R. de Borst, ‘Bifurcations in finite element models with a non-associated flow law’ , Int. J. Num. Anal. Meth. Geomech., 12, 99–116 (1988)

    Article  MATH  Google Scholar 

  4. A. Needleman and V. Tvergaard, ‘Finite element analysis of localization in plasticity’, In Finite Elements V.-Special Problems in Solid Mechanics, (Edited by J.T. Oden and G.F. Carey), 94–157, Prentice-Hall, Englewood Cliff, New Jersey, 1984

    Google Scholar 

  5. Y.Leroy and M.Ortiz, ‘Finite element analysis of strain localization in fric-tional materials’ , Int. J. Num. Anal. Meth. Geomech., 13, 53–74(1989)

    Google Scholar 

  6. M. Ortiz, Y. Leroy and A. Needleman, ‘A finite element method for localized failure analysis’ , Comp. Meth. Appl. Mech. Eng., 61, 189–214 (1987)

    Article  MATH  Google Scholar 

  7. D. Peric, D.R.J. Owen and M.E. Honnor, ‘A model for large strain elasto-plasticity based on logarithmic strain: computational issues’ , Comp. Meth. Appl. Mech. Engng., (accepted for publication), (1991)

    Google Scholar 

  8. A. Needleman, ‘Non-normality and bifurcation in plane strain tension and compression’, J. Mech. Phys. Solids, 27, 231–254 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. O.C. Zienkiewicz and G.C. Huang, ‘A note on localization phenomena and adaptive finite-element analysis in forming processes’ , Comm. Appl. Num. Meth., 6, 71–76 (1990)

    Article  Google Scholar 

  10. R. Larsson, Numerical Simulation of Plastic Localization, Publication 90:5, Chalmers University of Technology, Göteborg, (1990)

    Google Scholar 

  11. R. de Borst, ‘Simulation of strain localization: a reappraisal of Cosserat continuum’, Eng. Gomput., (accepted for publication) (1990)

    Google Scholar 

  12. H.B. Mülhaus and I. Vardoulakis, ‘The thickness of shear band in granular materials’ , Gé otechnique, 37, 271–283 (1987)

    Article  Google Scholar 

  13. B.D. Coleman and M.L. Hodgdon, ‘On shear band in ductile materials’ , Arch. Rat. Mech. Anal., 90, 219–247(1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Triantafyllidis and E.C. Aifantis, ‘A gradient approach to localization of deformation: I. Hyperelastic materials’ , J. Elasticity, 16, 225–237(1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. R.D. Mindlin, ‘Influence of couple-stresses on stress concentrations’ , Exper. Mech., 2, 1–8 (1962)

    Article  Google Scholar 

  16. D.R.J. Owen and E. Hinton, Finite Elements in Plasticity, Pineridge Press, Swansea (1980)

    MATH  Google Scholar 

  17. R.D. Wood, ‘Finite element analysis of plane couple-stresses problems using first order stress functions’, Int. J. Num. Meth. Eng., 26, 489–509 (1988)

    Article  MATH  Google Scholar 

  18. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method. Volume 2, McGraw-Hill, Maidenhead, 4-th ed. (1991)

    Google Scholar 

  19. R. de Borst and H.-B. Mülhaus, ‘Computational strategies for gradient continuum models with a view to localization of deformation’, In Nonlinear Engineering Computations, (Edited by N. Bicanic et al.), 239–260, Pineridge Press, Swansea (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Oñate J. Periaux A. Samuelsson

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, J., Peric, D., Owen, D.R.J. (1991). An Assessment of the Cosserat Continuum through the Finite Element Simulation of a Strain Localisation Problem. In: Oñate, E., Periaux, J., Samuelsson, A. (eds) The finite element method in the 1990’s. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10326-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10326-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10328-9

  • Online ISBN: 978-3-662-10326-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics