Skip to main content

Very Large Eddy Simulation for the Prediction of Unsteady Vortex Motion

  • Chapter
Modelling Fluid Flow

Abstract

A new turbulence model for Very Large Eddy Simulation, based on the extended k-ε model of Chen and Kim is developed and presented in this paper. Introducing an adaptive filtering technique, the model can distinguish between numerically resolved and unresolved parts of flow. It is applied to the simulation of unstable vortex motion in a pipe trifurcation. This flow phenomenon cannot be predicted with classical RANS methods and commonly used turbulence models. Using the VLES method with the new turbulence model, the phenomenon is well predicted and the results agree reasonably well with measurement data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

f :

filter function

h max :

local grid size

k :

turbulent kinetic energy

L :

Kolmogorov lengt scale

P k :

production term

U :

local velocity

α :

model constant

Δ:

resolved length scale

Δt :

time step

ε :

dissipation rate

v :

kinematic visscosity

v t :

turbulent viscosity

References

  1. Chen YS, Kim SW (1987) Computation of turbulent flows using an extended k-c turbulence closure model, NASA CR-179204

    Google Scholar 

  2. Constantinescu GS, Squires KD (2000) LES and DES Investigations of Turbulent flow over a Sphere, AIAA-2000–0540

    Google Scholar 

  3. De Langhe C, Dick E (2002) Very-Large-Eddy Simulation of Turbulent Flows, http://allserv.rug.ac.be/—edick/

    Google Scholar 

  4. Hoffmann H, Roswora RR, Egger A (2000) Rectification of Marsyangdi Trifurcation, In: Hydro Vision 2000 Conference Technical Papers, HCI Publications, Inc., Charlotte

    Google Scholar 

  5. Magnato F, Gabi M (2000) A new adaptive turbulence model for unsteady flow fields in rotating machinery, In: Proceedings of the 8th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC 8)

    Google Scholar 

  6. Maihöfer M (2002) Effiziente Verfahren zur Berechnung dreidimensionaler Strömungen mit nichtpassenden Gittern, Ph.D. thesis, University of Stuttgart

    Google Scholar 

  7. Maihöfer M, Ruprecht A (2003) A Local Grid Refinement Algorithm on Modern High-Performance Computers, In: Proceedings of Parallel CFD 2003, Elsavier, Amsterdam

    Google Scholar 

  8. Pope SB (2000) Turbulent flows, Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  9. Ruprecht A (1989) Finite Elemente zur Berechnung dreidimensionaler turbulenter Strömungen in komplexen Geometrien, Ph.D. thesis, University of Stuttgart

    Google Scholar 

  10. Ruprecht A (2003) Numerische Strömungssimulation am Beispiel hydraulischer Strömungsmaschinen, Habilitation thesis, University of Stuttgart

    Google Scholar 

  11. Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Comments on the Feasibility of LES for Wings, and on Hybrid RANS/LES Approach, In: Liu C, Liu Z (eds) Advances in DNS/LES, Greyden Press, Columbus

    Google Scholar 

  12. Van der Vorst HA (1994) Recent Developments in Hybrid CG Methods, In: Gentzsch W, Harms U (eds) High-Performance Computing and Networking, vol. 2: Networking and Tools, Lecture Notes in Computer Science, 797, Springer, Berlin, Heidelberg, New York, pp 174–183

    Google Scholar 

  13. Willems W, Peters N (1997) Large Eddy Simulation of a Turbulent Mixing Layer Using a New Two-Level-Turbulence Model, In: Proceedings of the 11th Symposium on Turbulent Shear Flows, Grenoble

    Google Scholar 

  14. Zienkiewicz OC, Vilotte JP, Toyoshima S, Nakazawa S (1985) Iterative method for constrained and mixed finite approximation. An inexpensive improvement of FEM performance Comput Methods Appl Mech Eng 51: 3–29

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Ruprecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruprecht, A., Helmrich, T., Buntic, I. (2004). Very Large Eddy Simulation for the Prediction of Unsteady Vortex Motion. In: Vad, J., Lajos, T., Schilling, R. (eds) Modelling Fluid Flow. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08797-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08797-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06034-2

  • Online ISBN: 978-3-662-08797-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics