Skip to main content

Physical Properties of Coatings

  • Chapter
Book cover Coated Metal

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 664 Accesses

Abstract

Several kinds of porosity are distinguished as applied to porous materials depending on what quantity is taken and measured as the “volume of a solid body”. The true density is defined as the ratio of the body mass m to the volume of its compact nonporous matrix V r :

$${\rho _{true}} = \frac{m}{{{V_r}}}.$$
(3.1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hand-held coating thickness gauge (1996) PED: Prod and Ind Equip Dig, Febr: 20

    Google Scholar 

  2. NIST-traceable coating thickness standards (1998) Mod Mach Shop 70: 368, 270

    Google Scholar 

  3. Thermal diffusivity as the basis of a production process control system (1991) Powder Met Int 23: 240

    Google Scholar 

  4. Agamal Vishal, Marder Arnold R (1996) Simulation of chromized coating processing and microstructure. Mater Charact 36: 35–42

    Google Scholar 

  5. Arata Yashiaki, Ohmori Akira, Li Chang-Siu (1988) Electrochemical method to evaluate the connected porosity in ceramic coatings. Thin Solid Films 156: 315–325

    Article  Google Scholar 

  6. Bartenev SS, Fed’ko YuP, Grigorov AI (1982) Detonation coatings in engineering industry (in Russian). Mashinostroenie, Leningrad

    Google Scholar 

  7. Bernacchi E, Ferrero A, Gariboldi E, Korovkin A, Pontini G (1996) Coatings in alumi-num die casting parts and steel forming tools. Metal Sci and Technol 14: 3–11

    CAS  Google Scholar 

  8. Berman VA, Mayorova LA, Sukhova EE (1984) Porosity of chrome carbide detonation coatings (in Russian). Nauchnaya Mysl, Kiev

    Google Scholar 

  9. Bjomeklett A, Haukeland L, Wigren J, Kristiansen H (1994) Effective medium theory and the thermal conductivity of plasma-sprayed ceramic coatings. J Mater Sci 29: 4043–4050

    Article  Google Scholar 

  10. Bornas H, Mayr P, Kurth B (1997) Fatigue properties of steel coated with TiN by a PVD process. Mater and Manuf Processes 12: 17–27

    Article  Google Scholar 

  11. Borisov YuS, Kharlamov YuA, Sidorenko SL, Ardatovskaya EN (1987) Gas-thermal Powder Coatings (in Russian). Nauchnaya Mysl, Kiev

    Google Scholar 

  12. Boving HJ, Hintermann HE, Julia C (1992) Characterization of CVD and PVD coatings. Adv Mater Technol Int: 81–84

    Google Scholar 

  13. Boxman RL, Goldsmith S (1993) Mass and surface conductivity gain on polymer sur-faces metallized using vacuum arc deposition. Thin Solid Films 236: 341–346

    Article  CAS  Google Scholar 

  14. Brindley WJ, Leonhardt TA (1990) Metallographic techniques for evaluation of HSBF thermal barrier coatings. Mater Charact 24: 93–101

    Article  CAS  Google Scholar 

  15. Bromark Michael, Larsson Mats, Hedengvist Per, Olsson Mikael, Hogmark Sture (1992) Influence of substrate surface topography on the erosion resistance of TiN coated tool steels. Tribology 11: 153–160

    Google Scholar 

  16. Bull SJ, Rickerby DC, Gent JT (1991) Quality assurance assessment of thin films. Surface Eng 7: 145–153

    Google Scholar 

  17. Bulychev SI, Alekhin VP (1990) Testing of materials by continuous indentation (in Russian). Mashinostroenie, Moscow

    Google Scholar 

  18. Buzovkina TB, Men’ AA (1972) On the use of sintered quartz as a standard for comparative measurement methods of thermal conductivity (in Russian). Eng Phys J 23: 669–672

    CAS  Google Scholar 

  19. Buzovkina TB, Sokolova TV, Obukhov AP (1972) The effect of structural parameters and temperature on the efficient thermal conductivity of plasma-deposited aluminum oxide (in Russian). Thermal Physics of High Temperatures 10: 395–399

    CAS  Google Scholar 

  20. Cartier M, McDonnell L, Cashell EM (1991) Friction of tungsten carbide—cobalt coatings obtained by means of plasma spraying. Surface and Coating Technology 48: 241248

    Google Scholar 

  21. Celis JP, Dress D, Maesen E, Roos JR (1993) Quantitative determination of through-coating porosity in thin ceramic physically vapor-deposited coatings. Thin Solid Films 224: 58–62

    Article  CAS  Google Scholar 

  22. Chan HC, Liu ZY, Chuang YC (1993) Degradation of plasma-sprayed alumina and zirconia coatings on stainless steel during thermal cycling and hot corrosion. Thin Solid Films 233: 56–64

    Article  Google Scholar 

  23. Cheremskoi PG (1985) Research Techniques for Porous Solid Bodies (in Russian). Energoatomizdat, Moscow

    Google Scholar 

  24. Coil BF, Sathrum P, Fontana R, Peyre JP, Duchateau D, Benmaiek M (1992) Mechanical properties of (Ti,AI)N films prepared by arc vaporation for cutting tool application. Vide, Couches Minces 48: 112–114

    Google Scholar 

  25. Crostack HA, Jahnel W, Meyer EH, Selvadurai V (1996) Developments in nondestructive testing of surface coatings. Weld World 37: 114–120

    CAS  Google Scholar 

  26. Curtis CL, Gawne DT, Priestnall M (1994) The processing and electrical properties of plasma-sprayed yttria-zirconia. J Mater Sci 29: 3102–3106

    Article  CAS  Google Scholar 

  27. Cushnie K, Bell JA, Smith GD (1991) Thermal barrier coatings increase applicability of Ni-Co-Cr-iron based alloy. Ind Heat 58: 30, 32–35

    Google Scholar 

  28. De Bruyn K, Celts JP, Roos JR, Stals LM, Van Stappen M (1993) Coating thickness and surface roughness of TiN-coated high speed steel in relation to coating. Wear 166: 127–129

    Article  Google Scholar 

  29. Demichelis F, Pirri CF, Tresso E (1993) Degree of crystallinity and electrical transport properties of microcrystalline silicon-carbon alloys. Phil Mag B 67: 331–346

    Article  CAS  Google Scholar 

  30. Deuis RL, Yeliup JM, Subramanian C (1997) Aluminum composite coatings produced by plasma transferred arc surfacing technique. Mater Sci and Technol 13: 511–512

    Article  CAS  Google Scholar 

  31. Dietrich S, Schneegans M, Moske M, Samwer K (1996) Investigation on metallurgical properties for VLSI applications. Thin Solid Films 275: 159–163

    Article  CAS  Google Scholar 

  32. Dudko DY, Primak AV, Falkovsky NI (1982) Electric insulation characteristics of plasma-sprayed coatings of aluminum oxide at high temperatures (in Russian). Poroshkovaya Metallurgia 2: 82–86

    Google Scholar 

  33. Dudko DY, Primak AV, Ivanov VM, Kuzovitkin VF (1992) Electrical properties of plasma-sprayed coatings made of shpinel materials. In: Borisenko AI(ed) Corrosion-Resistant Coatings (in Russia), Nauka, St. Peterburg, pp 81–84

    Google Scholar 

  34. Edneral NV, Ivanov AN, Kosyak GN, Fomicheva EI (1993) Radiographic measurement of the coating thickness (in Russian). Defectoscopy 9: 41–44

    Google Scholar 

  35. Erdemir A, Switala M, Wei R, Wilbur P (1991) A tribological investigation of the graphite-to-diamond-like behavior of amorphous carbon films ion beam deposited on ceramic substrates. Surface and Coating Technology 50: 17–23

    Article  CAS  Google Scholar 

  36. Goswami J, Raghunathan L, Devi A, Shivashankar SA, Chandrasekaran S (1996) Chemical vapor deposition of thin copper films using a new metalorganic precursor. J Mater Sci Lett 15: 573–575

    Article  CAS  Google Scholar 

  37. Gotlib LI (1990) Plasma spraying (in Russian). Scientific and Engineering Information Institute of Chemical Machine Building Press, Moscow

    Google Scholar 

  38. Graebner JE, HarineU TM, Miller RP (1994) Improved thermal conductivity in iso- topically enriched chemical vapor deposited diamond. Appl Phys Lett 64: 2549–2551

    Article  CAS  Google Scholar 

  39. Griffen LA (1988) Peculiarities and prospects for development of electric heaters with surface-distributed heat release. In: Griffen LA (ed) Electric heaters made of composite resistive materials (in Russian). Institute of Materials Technology Problems AN SSSR Press, Kiev pp 3–11

    Google Scholar 

  40. Hammer P, Helmbold A, Rohwer KC, Meissner D (1991) Electrical characterization of plasma-deposited hydrogenated amorphous carbon films. Mater Sci and Eng A 139: 334–338

    Article  Google Scholar 

  41. Hasugama Hiroki, Shima Yukari, Baba Koumei, Wolf Gerhard K, Martin Herbert, Stippich Frank (1997) Adhesive and corrosion-resistant zirconium oxide coatings on stainless steel prepared by ion beam assisted deposition. Nucl Instrum and Meth Phys Res B 127–128: 827–831

    Google Scholar 

  42. Haysky J, Alien AJ, Long GG, Herman H, Berndt CC (1997) Characterization of the closed porosity in plasma-sprayed alumina. J Mater Sci 32: 3407–3410

    Article  Google Scholar 

  43. Hollander John (1991) Use of ceramic coatings to enhance performance of metal furnace components. Ceram Eng and Sci Proc 12: 152–161

    Google Scholar 

  44. Huntz AM, Lebrun SL, Boumara A (1990) Relation between the residual stresses and the high-temperature oxidation resistance of superalloys protected by plasma-sprayed coatings. Oxide Metals 33: 321–355

    Article  CAS  Google Scholar 

  45. Jouan PY, Lemperiere G (1994) Influence of low energy ion bombardment on the properties of TiN films deposited by magnetron sputtering. Thin Solid Films 237: 200207

    Google Scholar 

  46. Kerkush IR, Melnik PI (1997) Properties improvement of plasma-sprayed iron coatings by chromium plating. Poroshkovaya Metallurgia 40: 230–231

    Google Scholar 

  47. Kharlamov YuA (1982) The effect of geometrical errors of a rough work piece on thickness non-uniformity of gas-thermal coatings after dimensional processing (in Russian). Welding Engineering 7: 32–33

    Google Scholar 

  48. Kharlamov YuA (1990) Prediction of porosity of powder coatings (in Russian). Poroshkovaya Metallurgia 12: 36–41

    Google Scholar 

  49. Khasui A (1975) Deposition techniques (in Russian). Mashinostroenie, Moscow

    Google Scholar 

  50. Kim Soo-Hyun, Chung Deuk-Seok, Park Ki-Chul, Kim Ki-Bum, Miu Seok-Hong (1999) A comparative study of film properties of chemical vapor deposited TiN film as diffusion barriers for Cu metallization. J Electrochem Soc 146: 1455–1460

    Article  Google Scholar 

  51. Kobayashi Akira, Bessho Nobuyori, Kurihara Setsu, Arata Yoshiaki (1989) Porosity measurement of ceramic coating by image processing method. Trans JWRI 18: 25–30

    Google Scholar 

  52. Kopylov VI (1973) Method for estimation of cohesion between the substrate and coat-ing (in Russian). Fizika I Khimia Obrabotki Materialov 5: 72–81

    Google Scholar 

  53. Kostikov VN, Shesterin YuA (1978) Plasma Coatings (in Russian). Metallurgia, Moscow

    Google Scholar 

  54. Kovensky IM, Povetkin VV (1999) Physical metallurgy of coatings (in Russian). Joint Venture “Internet Engineering”, Moscow

    Google Scholar 

  55. Kreye H (1998) A comparison of HVOF systems-behavior of materials and coating properties. Galvanotekhnika 89: 3006–3013

    CAS  Google Scholar 

  56. Kudinov VV (1977) Plasma coatings (in Russian). Nauka, Moscow

    Google Scholar 

  57. Kudinov VV, Ivanov VM (1981) Plasma depositing of high-melting coatings (in Russian). Mashinostroenie, Moscow

    Google Scholar 

  58. Kudinov VV, Pekshev PYu, Belaschenko VE, Solonenko OP, Safiulin AP (1990) Plasma-sprayed coatings (in Russian). Nauka, Moscow

    Google Scholar 

  59. Kudryavtsev YuP, Dependence of the plasma coating density on parameters of plasma atomizer (in Russian). Izv. VUZov, Mashinostroenie 11: 175–178

    Google Scholar 

  60. Kuroda S (1992) Fundamental phenomena in spray deposition of surface coatings. Res Activ: 9–10

    Google Scholar 

  61. Li CC (1980) Characterization of thermally sprayed coatings for high temperature wear protection applications. Thin Solid Films 73: 59–77

    Article  CAS  Google Scholar 

  62. Lin Jen Fin, Li Tzuen Ren (1993) Analysis of the friction and wear mechanisms of multilayered plasma-sprayed ceramic coatings. Wear 160: 201–212

    Article  Google Scholar 

  63. Livshitz BG, Kraposhin VS, Linetsky YaL (1980) Physical properties of metals and alloys (in Russian). Metallurgia, Moscow

    Google Scholar 

  64. Lizandier MF, Lanza E, Sebaoun A, Giround A, Guiraldeng P (1992) Characterization of porosity of ceramic coatings assigned to applications in sea-water with the evolution of their electrochemical behavior under friction Wear 153: 387–397

    CAS  Google Scholar 

  65. Longa Y, Takemoto M (1994) Laser processing high-chromium nickel—chromium coatings deposited by various thermal spraying methods. Corrosion (USA) 50: 827–37

    Article  CAS  Google Scholar 

  66. Lyasnikov VN (1994) Properties of plasma-sprayed powder coatings. J Adv Mater 1: 381–387

    Google Scholar 

  67. Ma Dejun, Xu Kewei, He Jiawen (1997) Numerical simulation for measuring yield strength of thin metal film by nanoindentation method. Trans Nonferrous Metals Soc China 7: 66–68

    Google Scholar 

  68. Mahajan S, Wen JG, Ito W, Yoshida Y, Kubota N, Liu CJ, Morishita T (1994) Growth and superconductivity of C-axis in plane aligned YBa2Cu3O7 films fabricated by the self-template method. Appl Phys Lett 65: 3129–3131

    Article  CAS  Google Scholar 

  69. Middleton RM, Huang PJ, Wells MGH, Kant RA (1991) Effect of coatings on rolling contact fatigue behavior of M50 bearing steel. Surface Eng 7: 319–328

    CAS  Google Scholar 

  70. Mischenko BP, Osechkov PP, Novichenko LF (1985) The weight meter of coating thickness and growth rate (in Russian). Problemy Spetsialnoy Elektrometallurgii 4: 5155

    Google Scholar 

  71. Miyazawa Hajime, Hotta Katsuyoshi, Hirose Haruo, Mureikawa Masao (1992) Obtaining of superconductive films by gas-thermal coating (in Japanese). J Jap Soc Powder and Powder Met 39: 748–751

    Article  Google Scholar 

  72. Monaghan DP, Teer DG, Laing KC, Logan PA (1994) The state-of-the-art in thin protective coatings. Surface Technol Int June: 2–5

    Google Scholar 

  73. Mueller Andrew, Wang Ge, Rapp Robert A, Courtright Edward L, Kircher Thomas A (1992) Oxidation behavior of tungsten and germanium-alloyed molybdenum disilicide coatings. Mater Sci and Eng A 155: 199–207

    Article  Google Scholar 

  74. Ohmori Akira, Zhou Zhan, Inoue Katsunori (1992) Penetration behavior into connected porosities of plasma-sprayed Al2O3 coatings with liquid Mn,. Trans JWRT 21: 302–303

    Google Scholar 

  75. Papyrin AN, Tushinsky LI, Plokhov AV, Bolotina NP, Bol AA, Alkhimov AP (1992) New Materials and Technologies. Theory and Practice of Reinforcement in Extreme Processes (in Russian). Nauka, Novosibirsk

    Google Scholar 

  76. Pawlowski L, Fauchais P (1992) Thermal transport properties of thermally sprayed coatings. Int Mater Rev 37: 271–289

    CAS  Google Scholar 

  77. Pawlowski Lech (1991) Applications and properties of thermally sprayed oxide ceramics. Powder Met Int 23: 357–362

    Google Scholar 

  78. Pawlowski Lech (1991) The properties of plasma-sprayed aluminum—aluminum oxide cermets. Surface and Coating Technology 48: 219–224

    Article  Google Scholar 

  79. Peterson GP, Fletcher LS (1990) Measurement of the thermal contact conductance and thermal conductivity of anodized aluminum coatings. Trans ASME J Heat Transfer 112: 579–585

    Article  CAS  Google Scholar 

  80. Plachenov TG, Korosentsev SD (1988) Porosimetry (in Russian). Khimia, Leningrad

    Google Scholar 

  81. Pustotina SR, Novikov IN, Soloviev BN, Glukhova AK, Grechishkina AI (1983) Development and study of properties of multilayered thermal-insulating coatings made from thermal-reacting ceramic-metal composites deposited by plasma spraying In: Shultz MM (ed) Anticorrosion coatings (in Russian). Nauka, Leningrad, pp 122–127

    Google Scholar 

  82. Rakitsky AA, De los Rios ER, Miller KJ (1994) Fatigue resistance of medium carbon steel with a wear resistant thermal sprayed coating. Fatigue and Fract Eng Mater and Struct 17: 563–570

    Article  Google Scholar 

  83. Rangaswamy S, Herman H, Safai S (1980) Thermal expansion study of plasma-sprayed oxide coating. Thin Solid Films 73: 43–52

    Article  CAS  Google Scholar 

  84. Rogozhin VM, Akimova LV, Kutakova EE (1985) Measurement technique for porosity and density of coating by the hydrostatic weighing (in Russian). Poroshkovaya Metallurgia 6: 63–65

    Google Scholar 

  85. Rogozhin VM, Bobrov GV, Amelchenko NA (1985) On the applicability of different methods of the hydrostatic weighing for estimation of coating properties (in Russian). Poroshkovaya Metallurgia 4: 65–67

    Google Scholar 

  86. Rudajevova A (1993) Thermal diffusivity of plasma-sprayed coatings of ZrO2 with 8wt% Y2O3 and ZrO2 with 25wt% CeO2. Thin Solid Films 223: 248–252

    Article  CAS  Google Scholar 

  87. Saint-Jacques RG, Bordeaux F, Stansficid B, Veilleux G, Zurak WW, Lakhsasi A, Boucher C, Moreau C (1992) Enhanced resistance of plasma-sprayed TiC coatings to thermal shocks. J Nucl Mater 191–194: 465–468

    Article  Google Scholar 

  88. Salvato M, Attanasio C, Coccorese C, Maribato L, Prischepa SL (1994) Superconducting and structural properties of BSCCO thin films by molecular beam epitaxy. Cryogenics 34: 859–862

    Article  CAS  Google Scholar 

  89. Sampath S, Gansert R, Herman H (1995) Plasma-spray forming ceramics and layered composites. JOM: J Miner, Metals and Mater Soc 47: 30–33

    Google Scholar 

  90. Sampath S, Tiwari R, Credmundsson B, Herman H (1991) Microstructure and properties of plasma-sprayed consolidated two-phase nickel aluminides. Scr Met and Mater 25: 1425–1430

    Article  CAS  Google Scholar 

  91. Schutz HG, Globmann T, Stover D, Buchkremer HP, Jager D (1991) Manufacture and properties of plasma-sprayed Cr2O3. Mater and Manuf Processes 6: 649–669

    Article  Google Scholar 

  92. Shaw Leon L, Barber Brent, Jordan Eric H, Gell Maurice (1998) Measurements of the interfacial fracture energy of thermal barrier coatings. Sci Mater 39: 1427–1434

    CAS  Google Scholar 

  93. Silvestre C, Hauser JR (1996) Time-dependent dielectric breakdown measurements on RPECVD and thermal oxides. Thin Solid Films 277: 101–114

    Article  CAS  Google Scholar 

  94. Smagorinski M, Tsantrizos P, Grenier S, Entezarian M, Ajersch F (1996) The thermal plasma near-netshape spray forming of Al composites JOM: J Miner, Metals and Mater Soc 48: 56–59

    Google Scholar 

  95. Taylor TA, Appleby DL, Weatherill AE, Griffiths J (1990) Plasma-sprayed yttriastabilized zirconia coatings: structure—property relationship. Surface and Coating Technology 43–44: 470–480

    Article  Google Scholar 

  96. Tchizhik AA, Getsov LB, Rybnikov AI, Malashenko IS (1995) Creep studies of the EB PVD coatings with a ceramic layer. Thin Solid Films 270: 243–246

    Article  CAS  Google Scholar 

  97. Tjong SC (1996) Performance of laser-consolidated plasma-sprayed coatings on Fe28Mn-7A1–1C alloy. Thin Solid Films 274: 95–100

    Article  CAS  Google Scholar 

  98. Tretiyachenko GN, Gribkov YuA, Karpinos BS,Samuleev VV (1994) The method for reduction of the thermostressed state level of turbine-gas engine blades through the choice of optimal thickness distribution of the ceramic thermal-insulating coating (in Russian). Problemy Prochnosti 1: 62–67

    Google Scholar 

  99. Trottier C Michael, Gregory Otto J, Burbank Kenneth A (1992) Dielectric stability of oxides formed on NiCrA1Y-coated substrates. Thin Solid Films 214: 253–259

    Article  Google Scholar 

  100. Tushinsky LI, Plokhov AV (1986) The Study of Structure and Physical-Mechanical Properties of Coatings (in Russian). Nauka, Novosibirsk

    Google Scholar 

  101. Tushinsky LI, Plokhov AV, Sindeev VI (1996) Protection properties of surface layers after high-energy impacts (in Russian). Novosibirsk State Technical University Press, Novosibirsk

    Google Scholar 

  102. Udler David M (1997) Achieve required CpK values in plated machined parts. Mod Mach Shop 69: 80–85

    Google Scholar 

  103. Usmani Saifi, Sampath Sanjay (1996) Erosion studies on duplex and graded ceramic overlay coatings. JOM: J Miner Metals and Mater Soc 48: 51–54

    Google Scholar 

  104. Valitov AM, Shilov GI (1970) Devices and methods for control of coating thickness. Handbook (in Russian). Mashinostroenie, Leningrad

    Google Scholar 

  105. Vinokurov GG, Bolotina NP, Larionov VP (1993) Density calculation of gas-thermal coatings (in Russian). Fizika I Khimia Obrabotki Materialov 1: 96–100

    Google Scholar 

  106. Virnik AM, Morozov IA, Podzey AV (1970) Concerning the estimate of residual stresses in coatings deposited by plasma spraying (in Russian). Fizika I Khimia Obrabotki Materialov 4: 53–58

    Google Scholar 

  107. Vityaz PA, Kaptsevich VM, Sheleg VK (1987) Porous powder materials and their products (in Russian), Vysshaya Shkola, Minsk

    Google Scholar 

  108. Vuoristo PJM, Telama AK, Matyla TA, Kettunen PO (1985) Electrical insulating properties and thermal stability of R.F.-sputtered alumina coatings. Thin Solid Films 126: 43–49

    Article  Google Scholar 

  109. Wang I Yen, Niarchos D, Tsakalakos T (1993) Bi—Sr—Ca—Cu-0 superconducting films by plasma sputtering of nanocrystalline compound targets. Nanostruct Mater 2: 81–90

    Article  Google Scholar 

  110. Wang M, Schmidt K, Reichelt K, Jiang X, Hübsch H, Dimigen H (1992) The proper-ties of W—C films deposited by reactive pf sputtering. J Mater Res 7: 1465–1472

    Google Scholar 

  111. Wang Yinglong (1993) Friction and wear performances of detonation-, gun-and plasma-sprayed ceramic and cermet hard coatings under dry friction. Wear 161: 69–78

    Article  Google Scholar 

  112. Wirz Ch, Blatter A, Hauert R (1992) Properties of films prepared by thermal coevaporation of Cr and Ti in nitrogen. Thin Solid Films 214: 63–67

    Article  CAS  Google Scholar 

  113. Yamamichi Shintaro, Yabuta Hisato, Sakuma Toshiyuki, Miyasaka Yoichi (1994) (Ba+Sr)/Ti ratio dependence of the dielectric properties for (Ba0,5Sr55)TiO3 thin films prepared by ion beam sputtering. Appl Phys Lett 64: 1644–1646

    Google Scholar 

  114. Yi Maozhong, Zhang Xianlong, Ji Gengshun, Zheng Jihong, He Jiawen (1997) Erosion wear of AlSi-graphite and Ni /graphite abradable seal coatings. Trans Nonferrous Metals Soc China 7: 99–102

    CAS  Google Scholar 

  115. Zverev AI, Sharivker SYu, Astakhov EA (1979) Detonation sputtering of coatings (in Russian). Sudostroenie, Leningrad

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tushinsky, L.I., Kovensky, I., Plokhov, A., Sindeyev, V., Reshedko, P. (2002). Physical Properties of Coatings. In: Coated Metal. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06276-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06276-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07722-7

  • Online ISBN: 978-3-662-06276-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics