Skip to main content

Neuroprotection by Free Radical Scavengers and Other Antioxidants

  • Chapter
CNS Neuroprotection

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 155))

Abstract

Cells which depend on oxygen for survival are continuously subjected to oxidative stress due to the fact that during the respiratory process, in which molecular oxygen is reduced to water, a small fraction (2%–5%) of the oxygen is converted to superoxide radical \( \left( {O_2^{\bar\bullet }} \right) \) by a one-electron reduction mechanism. Superoxide is further converted to hydrogen peroxide and related metabolites. Such semi-reduced species of oxygen (reactive oxygen species) are highly reactive and capable of initiating a series of oxidative reactions, which collectively constitute oxidative stress. Under normal physiological conditions, cells are protected from oxidative injury by the various endogenous antioxidant defenses which have evolved to reduce oxidative stress. Tissue injury can result from any disruption of normal cellular function to the extent that oxygen radical production is substantially increased and these cellular defenses are overwhelmed. The central nervous system is particularly sensitive to oxygen radical damage because of the high levels of polyunsaturated lipids present that, when peroxidized, compromise the integrity of neuronal cell membranes together with the specialized functions of those membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Kogure K, Yamamoto H, Imazawa M, Miyamoto K (1987) Mechanism of arachidonic acid liberation during ischemia in gerbil cortex. J Neurochem 48: 503–509

    PubMed  CAS  Google Scholar 

  • Adams JD, Odunze IN (1991) Oxygen free radicals and Parkinson’s disease. Free Rad Biol Med 10:161–169

    PubMed  CAS  Google Scholar 

  • Anderson DK, Means ED (1985) Iron-induced lipid peroxidation in spinal cord: protection with mannitol and methylprednisolone. J Free Rad Biol Med 1:59–64

    CAS  Google Scholar 

  • Barja de Quiroga G, Perez Campo R, Lopez Torres M (1990) Anti-oxidant defences and peroxidation in liver and brain of aged rats. Biochem J 272:247–250

    Google Scholar 

  • Battelli MG, Abbondanza A, Stirpe F (1992) Effects of hypoxia and ethanol on the xanthine oxidase of isolated hepatocytes: conversion of D to O form and leakage from cells. Chem-Biol Interactions 83:73–84

    CAS  Google Scholar 

  • Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366

    PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    PubMed  CAS  Google Scholar 

  • Beckman JS, Minor RL, White CW, Repine JE, Rosen GM, Freeman BA (1998) Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J Biol Chem 263:6884–6892

    Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical therapy of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Beetsch JW, Park TS, Dugan LL, Shah AR, Gidday JM (1998) Xanthine oxidase-derived superoxide causes reoxygenation injury of ischemic cerebral endothelial cells. Brain Res 786:89–95

    PubMed  CAS  Google Scholar 

  • Behl C (1999) Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Progr Neurobiol 57:301–323

    CAS  Google Scholar 

  • Benzi G, Pastoris O, Marzatico F, Villa RF, Dagani F, Curti D (1992) The mitochondrial electron transfer alteration as a factor involved in the brain aging. Neurobiol Aging 13:361–368

    PubMed  CAS  Google Scholar 

  • Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentration of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374

    PubMed  CAS  Google Scholar 

  • Betz AL (1985) Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries. J Neurochem 44:574–579

    PubMed  CAS  Google Scholar 

  • Block F, Kunkel M, Sontag K-H (1995) Posttreatment with EPC-K1, an inhibitor of lipid peroxidation and of phospholipase A2 activity, reduces functional deficits after global ischemia in rats. Brain Res Bull 36:257–260

    PubMed  CAS  Google Scholar 

  • Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion: Evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622

    PubMed  CAS  Google Scholar 

  • Bonventre JV, Huang Z, Taheri MR, O’Leary E, Li E, Moskowitz MA, Sapirstein A (1997) Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–625

    PubMed  CAS  Google Scholar 

  • Bossi SR, Simpson JR, Isacson O (1993) Age dependence of striatal neuronal death caused by mitochondrial dysfunction. Neuroreport 4:73–76

    PubMed  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  • Bowling AC, Schulz JB, Brown RH, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61:2322–2325

    PubMed  CAS  Google Scholar 

  • Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muquit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    PubMed  CAS  Google Scholar 

  • Buchan AM, Gertler SZ, Huang Z-G, Li H, Chaundy KE, Xue D (1994) Failure to prevent selective CA1 neuronal death and reduce cortical infarction following cerebral ischemia with inhibition of nitric oxide synthase. Neuroscience 61:1–11

    PubMed  CAS  Google Scholar 

  • Buisson A, Margaill I, Callebert J, Plotkine M, Boulu RG (1993) Mechanisms involved in the neuroprotective activity of a nitric oxide synthase inhibitor during focal cerebral ischemia. J Neurochem 61:690–695

    PubMed  CAS  Google Scholar 

  • Caldwell M, O’Neill M, Earley B, Leonard B (1994) NG-Nitro-L-arginine protects against ischemia-induced increases in nitric oxide and hippocampal neurodegeneration in the gerbil. Eur J Pharm 260:191–200

    CAS  Google Scholar 

  • Cand F, Verdetti J (1989) Superoxide dismutase, glutathione peroxidase, catalase, and lipid peroxidation in the major organs of the aging rats. Free Rad Biol Med 7:59–63

    PubMed  CAS  Google Scholar 

  • Cao G, Cutler RG (1995a) Protein oxidation and aging, I, Difficulties in measuring reactive protein carbonyls in tissues using 2,4-dinitrophenylhydrazine. Arch Biochem Biophys 320:106–114

    PubMed  CAS  Google Scholar 

  • Cao G, Cutler RG (1995b) Protein oxidation and aging, II, Difficulties in measuring alkaline protease activity in tissues using the fluorescamine procedure. Arch Biochem Biophys 320:195–201

    PubMed  CAS  Google Scholar 

  • Cao W, Carney J-M, Duchon A, Floyd RA, Chevion M (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 88:233–238

    PubMed  CAS  Google Scholar 

  • Cao X, Phillis JW (1994) α-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res 644:267–272

    PubMed  CAS  Google Scholar 

  • Cao X, Phillis JW (1995) The free radical scavenger, α-lipoic acid, protects against cerebral ischemia-reperfusion injury in gerbils. Free Radical Res 23:365–370

    CAS  Google Scholar 

  • Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA (1991) Reversal of age-related increases in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-α-phenylnitrone. Proc Natl Acad Sci USA 88:3633–3636

    PubMed  CAS  Google Scholar 

  • Cerchiari EL, Hoel TM, Safar P, Sclabassi RJ (1987) Protective effects of combined superoxide dismutase and desferrioxamine on recovery of cerebral blood flow and function after cardiac arrest in dogs. Stroke 18:869–878

    PubMed  CAS  Google Scholar 

  • Chan PH, Fishman RA (1980) Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J Neurochem 35:1004–1007

    PubMed  CAS  Google Scholar 

  • Chan PH, Chu L, Chen SF, Carlson E, Epstein CJ (1991) Post-traumatic brain injury and edema are reduced in transgenic mice overexpressing CuZn-superoxide dismutase. Ann Neurol 21:482–486

    Google Scholar 

  • Chan PH, Kamii H, Yang G, Gafni J, Epstein CJ, Carlson E, Reola L (1993) Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia. Neuroreport 5:293–296

    PubMed  CAS  Google Scholar 

  • Chan PK, Kawase M, Murakami K, Chen SF, Li Y, Calagui B, Reola L, Carlson E, Epstein CJ (1998) Overexpression of SOD-1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci 18:8292–8299

    PubMed  CAS  Google Scholar 

  • Cheng HY, Liu T, Feuerstein G, Barone FC (1993) Distribution of spin trapping compounds in rat blood and brain — in vivo microdialysis determination. Free Rad Biol Med 14:243–250

    PubMed  CAS  Google Scholar 

  • Ciani E, Grøneng L, Voltattorni M, Rolseth V, Contestabile A, Paulsen RE (1996) Inhibition of free radical production or free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Res 728:1–6

    PubMed  CAS  Google Scholar 

  • Clough-Helfman C, Phillis JW (1991) The free radical trapping agent N-tert-butyl-α-phenylnitrone (PBN) attenuates cerebral ischemic injury in gerbils. Free Rad Res Comm 15:177–186

    CAS  Google Scholar 

  • Cohen G (1988) Oxygen radicals and Parkinson’s disease. In: Halliwell B (ed) Oxygen radicals and tissue injury. FASEB, Bethesda MD, pp 130–135

    Google Scholar 

  • Cotgreave IA, Moldevs P, Orrenius S (1988) Host biochemical defense mechanisms against prooxidants. Ann Rev Pharmacol Toxicol 28:189–212

    CAS  Google Scholar 

  • Cova D, Deangelis L, Monti E, Piccinini F (1992) Subcellular distribution of two spin-trapping agents in rat heart — possible explanation for their different protective effects against doxorubicin-induced cardiotoxicity. Free Rad Res Commun 15:353–360

    CAS  Google Scholar 

  • Cross CE (1981) Moderator: Oxygen radicals and human disease. Ann Intern Med 107:526–545

    Google Scholar 

  • Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS (1987) Role of xanthine oxidase inhibitor as free radical scavenger: a novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 148:314–319

    PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. PNAS 88:6368–6371

    PubMed  CAS  Google Scholar 

  • Delanty N, Dichter MA (1998) Oxidative injury in the nervous system. Acta Neurol Scand 98:145–153

    PubMed  CAS  Google Scholar 

  • Demediuk P, Saunders RD, Anderson DK, Means ED, Horrocks LA (1987) Early membrane lipid changes in laminectomized and traumatized cat spinal cord. Neurochem Pathol 7:79–89

    PubMed  CAS  Google Scholar 

  • Dempsey RJ, Roy MW, Meyer KL, Donaldson DL (1985) Indomethacin-mediated improvement following middle cerebral artery occlusion in cats: effects of anesthesia. J Neurosurg 62:874–881

    PubMed  CAS  Google Scholar 

  • Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1994) Increased levels of lipid hydroperoxides in the Parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9:92–97

    PubMed  CAS  Google Scholar 

  • Djuric Z, Lu MH, Lewis SM, Luongo DA, Shen XW, Heilbrun LK, Reading BA, Duffy PH, Hart RW (1992) Oxidative DNA damage levels in rats fed low-fat, high-fat or calorie-restricted diets. Toxicol Appl Pharmacol 115:156–160

    PubMed  CAS  Google Scholar 

  • Dubey A, Forster MJ, Sohal RS (1995) Effect of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone on protein oxidation and life span. Arch Biochem Biophys 324:249–254

    PubMed  CAS  Google Scholar 

  • Dugan L, Sensi S, Canzoniero L, Handran S, Rothman S, Lin T-S, Goldberg M, Choi D (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 15:6377–6388

    PubMed  CAS  Google Scholar 

  • During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32:618–624

    PubMed  CAS  Google Scholar 

  • Duvoisin RC (1992) Overview of Parkinson’s disease, Ann NY Acad Sci 648:187–193

    PubMed  CAS  Google Scholar 

  • Dykens JA, Stern A, Trenker E (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 49: 1222–1228

    PubMed  CAS  Google Scholar 

  • Edamatsu R, Mori A, Packer L (1995) The spin-trap N-tert-alpha-phenyl-butylnitrone prolongs the life span of the senescence accelerated mouse. Biochem Biophys Res Commun 211:847–849

    PubMed  CAS  Google Scholar 

  • Estevez AY, Phillis JW (1997) The phospholipase inhibitor, quinacrine, reduces infarct size in rats after transient middle cerebral artery occlusion. Brain Res 752:203–208

    PubMed  CAS  Google Scholar 

  • Faraci FM, O’Brian JE (1994) Nitric oxide and the cerebral circulation. Stroke 25:692–703

    PubMed  CAS  Google Scholar 

  • Fleischer JE, Lanier WL, Milde JH, Michenfelder JD (1987) Failure of deferoxamine, an iron chelator, to improve neurologic outcome following complete cerebral ischemia in dogs. Stroke 18:124–127

    PubMed  CAS  Google Scholar 

  • Floyd RA (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4:2587–2597

    PubMed  CAS  Google Scholar 

  • Floyd RA, Carney JM (1996) Nitrone radical traps protect in experimental neurodegenerative diseases. In: Olanow CW, Jenner P, Youdim M (eds) Neurodegeneration and neuroprotection in Parkinson’s Disease. Academic Press, San Diego, pp 70–90

    Google Scholar 

  • Folbergrova J, Zhao Q, Katsura K, Siesjo BK (1995) N-tert-butyl-α-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc Natl Acad Sci USA 92:5057–5061

    PubMed  CAS  Google Scholar 

  • Funahashi T, Floyd RA, Carney JM (1994) Age effect on brain pH during ischemia/reperfusion and pH influence on peroxidation. Neurobiol Aging 15: 161–167

    PubMed  CAS  Google Scholar 

  • Gorio A, Di Giulio AM (1996) Neuroregeneration as a repair mechanism in brain injuries: Pharmacological role of growth promoting factors. In: Peterson PL, Phillis JW (eds) Novel therapies for CNS injuries: Rationales and results. CRC Press, Boca Raton, pp 273–290

    Google Scholar 

  • Grammas P, Liu G-J, Wood K, Floyd RA (1993) Anoxia/reoxygenation induces hydroxyl free radical formation in brain microvessels. Free Rad Biol Med 14: 553–557

    PubMed  CAS  Google Scholar 

  • Greenamyre JT, Garcia-Osuna M, Greene JG (1994) The endogenous cofactors, thioc-tic acid and dihydrolipoic acid, are neuroprotective against NMDA and malonic acid lesions of striatum. Neurosci Lett 171:17–20

    PubMed  CAS  Google Scholar 

  • Greenlund LJS, Deckwerth TL, Johnson EM (1995) Superoxide dismutase delays neuronal apoptosis: a role of reactive oxygen species in programmed neuronal death. Neuron 14:303–315

    PubMed  CAS  Google Scholar 

  • Griffiths PD, Crossman AR (1993) Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease. Dementia 4:61–65

    PubMed  CAS  Google Scholar 

  • Gurney M (1997) The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J Neurol Sci 152 [Suppl 1]:S67-S73

    Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng H-X, Chen W, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264:1772–1775

    PubMed  CAS  Google Scholar 

  • Hagberg H, Lehmann A, Sandberg M, Nystrom B, Jacobson I, Hamberger A (1985) Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab 5:413–419

    PubMed  CAS  Google Scholar 

  • Hall E (1985) Beneficial effects of acute intravenous ibuprofen on neurologic recovery of head-injured mice: comparison of cyclooxygenase inhibition with inhibition of thromboxane A2 synthetase or 5-lipoxygenase. J Neurotrauma 2:75–83

    CAS  Google Scholar 

  • Halliwell B (1997) Introduction: Free radicals and human disease — trick or treat? In: Thomas CE, Kalyanaraman B (eds) Oxygen radicals and the disease process. Harwood Academic Publishers, Amsterdam, pp 1–14

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Hammer B, Parker WD, Bennett JP (1993) NMDA receptors increase OH radicals in vivo by using nitric oxide synthase and protein kinase C. Neuroreport 5:72–74

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:289–300

    Google Scholar 

  • Hara H, Kato H, Kogure K (1990) Protective effect of alpha-tocopherol on ischemic neuronal damage in the gerbil hippocampus. Brain Res 510:335–338

    PubMed  CAS  Google Scholar 

  • Hearse DJ, Tosaki A (1987) Free radicals and reperfusion-induced arrythmias: protection by spin trap agent PBN in the rat heart. Circ Res 60:375–383

    PubMed  CAS  Google Scholar 

  • Hensley K, Butterfield DA, Hall N, Cole P, Subramanian R, Mark P, Mattson MP, Markesbery WR, Harris ME, Aksenov M, Aksenova M, Wu JF, Carney JM (1996) Reactive oxygen species as causal agents in the neurotoxicity of Alzheimer’s disease-associated amyloid beta peptide. Ann NY Acad Sci 786:120–134

    PubMed  CAS  Google Scholar 

  • Hiramatsu M, Nakajima M, Komatsu M, Oikawa K, Ueda Y, Nakai O, Willmore LJ (1996) Electron spin resonance — computed tomography: Brain imaging and epilepsy. In: Packer L, Hiramatsu M, Yoshikawa T (eds) Free radicals in brain physiology and disorders. Academic Press, San Diego, pp 185–195

    Google Scholar 

  • Ikeda Y, Long DM (1990) The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery 27:1–11

    PubMed  CAS  Google Scholar 

  • Imaizumi S, Woolworth V, Kinouchi H, Chen SF, Fishman RA, Chan PH (1990) Liposome-entrapped superoxide dismutase ameliorates infarct volume in focal cerebral ischemia. Acta Neurochirurgica 51 [Suppl]:236–238

    PubMed  CAS  Google Scholar 

  • Ince PG, Lowe J, Shaw PJ (1998) Amyotrophic lateral sclerosis: current issues in classification, pathogenesis and molecular pathology. Neuropathol Appl Neurobiol 24: 104–117

    PubMed  CAS  Google Scholar 

  • Itoh T, Kawakami M, Yamauchi Y, Shimizu S, Nakamura M (1986) Effect of allopuri-nol on ischemia and reperfusion-induced cerebral injury in spontaneously hypertensive rats. Stoke 17:1284–1287

    CAS  Google Scholar 

  • Jackson GR, Apffel L, Werbach-Perez K, Perez-Polo JR (1990) Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance. J Neurosci Res 25:360–368

    PubMed  CAS  Google Scholar 

  • Jenner P (1994) Oxidative damage in neurodegenerative disease. Lancet 344:796–798

    PubMed  CAS  Google Scholar 

  • Johnson MP, McCarty DR, Velayo NL, Markgraf CG, Chmielewski PA, Ficorilli JV, Cheng HC, Thomas CE (1998) MDL 101002, a free radical spin trap, is efficacious in permanent and transient focal ischemia models. Life Sci 63:241–253

    PubMed  CAS  Google Scholar 

  • Katayama Y, Becker DP, Tamura T, Hovda DA (1990) Massive increases in extracellular potassium and indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    PubMed  CAS  Google Scholar 

  • Katsura K-I, Rodriguez De Turco EB, Folbergrova J, Bazan NG, Siesjo BK (1993) Coupling among energy failure, loss of ion homeostasis, and phospholipase A2 and C activation during ischemia. J Neurochem 61:1677–1684

    PubMed  CAS  Google Scholar 

  • Katzman R (1986) Alzheimer’s disease. N Engl J Med 314:964–973

    PubMed  CAS  Google Scholar 

  • Kihara T, Sakata S, Ikeda M (1995) Direct detection of ascorbyl radical in experimental brain injury: microdialysis and an electron spin resonance spectroscopic study. J Neurochem 65:282–286

    PubMed  CAS  Google Scholar 

  • Komara JS, Nayini NR, Bialick HA, Indrieri RJ, Evans AT, Garritano AM, Hoehner TJ, Jacobs WA, Huang RR, Krause GS, White BC, Aust SD (1986) Brain iron delocalization and lipid peroxidation following cardiac arrest. Ann Emerg Med 15:384–389

    PubMed  CAS  Google Scholar 

  • Kompala S-D, Babbs CF, Blako KE (1986) Effect of deferoxamine on late deaths following CPR in rats. Ann Emerg Med 15:405–407

    PubMed  CAS  Google Scholar 

  • Kuhn JE, Steimle CN, Zelenock GB, D’Alecy LG (1986) Ibuprofen improves survival and neurologic outcome after resuscitation from cardiac arrest. Resuscitation 14: 199–212

    PubMed  CAS  Google Scholar 

  • Kumar M, Liu G-J, Floyd RA, Grammas P (1996) Anoxic injury of endothelial cells increases production of nitric oxide and hydroxyl radicals. Biochem Biophys Res Comm 219:497–501

    PubMed  CAS  Google Scholar 

  • Kuroda S, Katsura K-I, Tsuchidate R, Siesjo BK (1996) Secondary bioenergetic failure after transient focal ischaemia is due to mitochondrial injury. Acta Physiol Scand 156:149–150

    PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    PubMed  CAS  Google Scholar 

  • Lai EK, Crossley C, Sridhar R, Misra HP, Janzen EG, McCay PB (1986) In vivo spin-trapping of free radicals generated in brain, spleen and liver during gamma radiation of mice. Arch Biochim Biophys 244:156–160

    CAS  Google Scholar 

  • Lancelot E, Revaud ML, Boulu RG, Plotkine M, Callebert J (1998) A microdialysis study investigating the mechanisms of hydroxyl radical formation in rat striatum exposed to glutamate. Brain Res 809:294–296

    PubMed  CAS  Google Scholar 

  • Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF (1997) A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. JAMA 278:1327–1332

    PubMed  Google Scholar 

  • Lebel CP, Bondy SC (1992) Oxidative damage and cerebral aging. Progr Neurobiol 38:601–609

    CAS  Google Scholar 

  • Le Witt PA (1994) Clinical trials of neuroprotection in Parkinson’s disease: long term selegiline and alpha-tocopherol treatment. J Neural Transm Suppl 43:171–181

    Google Scholar 

  • Lin Y, Phillis JW (1992) Deoxycoformycin and oxypurinol: protection against focal ischemic injury in the rat. Brain Res 571:272–280

    PubMed  CAS  Google Scholar 

  • Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen, Z-HV, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626–632

    PubMed  CAS  Google Scholar 

  • Liu TH, Beckman JS, Freeman BA, Hogan EL, Hsu CY (1989) Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain damage. Am J Physiol 256:H589–H593

    Google Scholar 

  • Lopez-Torres M, Perez-Campo R, Rojas C, Cadenas S, Barja G (1993) Simultaneous induction of SOD, glutathione reductase, GSH, and ascorbate in liver and kidney correlates with survival during aging. Free Rad Biol Med 15:133–142

    PubMed  CAS  Google Scholar 

  • Louvel E, Hugon J, Doble A (1997) Therapeutic advances in amyotrophic lateral sclerosis. TIPS 18:196–203

    PubMed  CAS  Google Scholar 

  • Malinski T, Bailey F, Zhang ZG, Chopp M (1993) Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 13:355–358

    PubMed  CAS  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Rad Biol Med 23:134–147

    PubMed  CAS  Google Scholar 

  • Martz D, Rayos G, Schielke GP, Betz AL (1989) Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in rats. Stroke 20:488–494

    PubMed  CAS  Google Scholar 

  • Masoro EJ, Yu BP, Bertrand HA (1982) Action of food restriction in delaying the aging process. Proc Natl Acad Sci USA 79:4239–4241

    PubMed  CAS  Google Scholar 

  • Matsuo M, Gomi F, Dooley MM (1992) Age-related alterations in antioxidant capacity and lipid peroxidation in brain, liver and lung homogenates of normal and vitamin-E deficient rats. Mech Aging Dev 64:273–292

    PubMed  CAS  Google Scholar 

  • McCord JM (1993) Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem 26:351–357

    PubMed  CAS  Google Scholar 

  • Mikawa S, Kinouchi H, Kamii H, Gobbel GT, Chen SF, Carlson E, Epstein CJ, Chan PH (1996) Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice. J Neurosurg 85: 885–891

    PubMed  CAS  Google Scholar 

  • Monji A, Morimoto N, Okuyama I, Yamashita N, Tashiro N (1994) Effect of dietary vitamin E on lipofuscin accumulation with age in the rat brain. Brain Res 634: 62–68

    PubMed  CAS  Google Scholar 

  • Monti E, Paracchini L, Perletti G, Piccinini F (1991) Protective effects of spin-trapping agents on adriamycin-induced cardiotoxicity in isolated rat atria. Free Rad Res Comms 14:41–45

    CAS  Google Scholar 

  • Moorhouse PC, Grootveld M, Halliwell B, Quinlan JG, Gutteridge JMC (1987) Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett 213:23–28

    PubMed  CAS  Google Scholar 

  • Mori Y, Takashima H, Seo H, Satoh K, Ohkawa M, Tanabe M (1996) N,N’-Propylene-dinicotinamide: scavengers of free radicals and inhibitor of free radical promoted damage to benzoate, deoxyribose, and amino acids. In: Packer L, Hiramatsu M, Yoshikawa T (eds) Free radicals in brain physiology and disorders. Academic Press, San Diego, pp 233–241

    Google Scholar 

  • Morikawa E, Moskowitz MA, Huang Z, Yoshida T, Irikura K, Dalkara T (1994) L-Arginine infusion promotes nitric oxide-dependent vasodilation, increases in regional blood flow, and reduces infarction volume in the rat. Stroke 25:429–435

    PubMed  CAS  Google Scholar 

  • Muizelaar JP, Marmarou A, Young HF, Choi SC, Wolf A, Schneider RL, Kontos HA (1993) Improving the outcome of severe head injury with the oxygen radical scavenger polyethylene glycol-conjugated superoxide dismutase: a phase II trial. J Neurosurg 78:375–382

    PubMed  CAS  Google Scholar 

  • Muller U, Krieglstein J (1995) Prolonged treatment with α-lipoic acid protects cultured neurons against hypoxic, glutamate-, or iron-induced injury. J Cereb Blood Flow Metab 15:624–630

    PubMed  CAS  Google Scholar 

  • Nagafuji T, Matsui T, Koide T, Asano T (1992) Blockade of nitric oxide formation by Nω-nitro-L-arginine mitigates ischemic brain edema and subsequent cerebral infarction in rats. Neurosci Lett 147:159–162

    PubMed  CAS  Google Scholar 

  • Nakagomi T, Sasaki T, Kirino T, Tamura A, Noguchi M, Saito I, Takakura K (1989) Effect of cycloxygenase and lipoxygenase inhibitors on delayed neuronal death in the gerbil hippocampus. Stroke 20:925–929

    PubMed  CAS  Google Scholar 

  • Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Stetler RA, Isakson PC, Chen J, Graham SH (1998) Cyclooxygenase-2 inhibition prevents death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci USA 95: 10954–10959

    PubMed  CAS  Google Scholar 

  • Nelson CW, Wei EP, Povlishock JT, Kontos HA, Moskowitz MA (1992) Oxygen radicals in cerebral ischemia. Am J Physiol 263:H1356–H1362

    Google Scholar 

  • Nilsson P, Hillered L, Ponten U, Ungerstedt U (1990) Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 10:631–637

    PubMed  CAS  Google Scholar 

  • Nishio S, Yunoki M, Noguchi Y, Kawauchi M, Asari S, Ohmoto T (1997) Detection of lipid peroxidation and hydroxyl radicals in brain contusion in rats. Acta Neurochir 70 [Suppl]:84–86

    CAS  Google Scholar 

  • Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain injury. J Neurosci 17:2746–2755

    PubMed  CAS  Google Scholar 

  • Obata T, Chieuh CC (1992) In vivo trapping of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate: Effects of MPTP, MPDP+ and MPP+. J Neural Trans 89:139–145

    CAS  Google Scholar 

  • Okabe M, Saito S, Saito T, Ito K, Kimura S, Niioka T, Kurasaki M (1998) Histochemical localization of superoxide dismutase activity in rat brain. Free Rad Biol Med 24:1470–1476

    PubMed  CAS  Google Scholar 

  • Olanow CW (1993) A radical hypothesis for neurodegeneration. TINS 16:439–444

    PubMed  CAS  Google Scholar 

  • O’Regan MH, Smith-Barbour M, Perkins LM, Cao X, Phillis JW (1994) The effect of amflutizole, a xanthine oxidase inhibitor, on ischemia-evoked purine release and free radical formation in the rat cerebral cortex. Neuropharmacol 33:1197–1201

    Google Scholar 

  • O’Regan MH, Smith-Barbour M, Perkins LM, Phillis JW (1995) A possible role for phospholipases in the release of neurotransmitter amino acids from ischemic rat cerebral cortex. Neurosci Lett 185:191–194

    PubMed  Google Scholar 

  • O’Regan MH, Song D, Vanderheide SJ, Phillis JW (1997) Free radicals and the ischemia-evoked extracellular accumulation of amino acids in rat cerebral cortex. Neurochem Res 22:273–280

    PubMed  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    PubMed  CAS  Google Scholar 

  • Oury TD, Piantadosi CA, Crapo JD (1993) Cold-induced brain edema in mice: involvement of extracellular superoxide dismutase and nitric oxide. J Biol Chem 268: 15394–15398

    PubMed  CAS  Google Scholar 

  • Oyama Y, Chikahisa L, Ueha T, Kanemaru K, Noda K (1996) Ginkgo biloba extract protects brain neurons against oxidative stress induced by hydrogen peroxide. Brain Res 712:349–352

    PubMed  CAS  Google Scholar 

  • Packer L (1996) Prevention of free radical damage in the brain: Protection by α-lipoic acid. In: Packer L, Hiramatsu M, Yoshikawa T (eds) Free radicals in brain physiology and disorders. Academic Press, San Diego, pp 19–34

    Google Scholar 

  • Pahlmark K, Folbergrova J, Smith M-L, Siesjo BK (1993) Effects of dimethylthiourea on selective neuronal vulnerability in forebrain ischemia in rats. Stroke 24:731–737

    PubMed  CAS  Google Scholar 

  • Pahlmark K, Siesjo BK (1996) Effects of the spin trap α-phenyl-N-tert-butyl nitrone (PBN) in transient forebrain ischaemia in the rat. Acta Physiol Scand 157:41–51

    PubMed  CAS  Google Scholar 

  • Palmer C, Vannucci RC, Towfighi J (1990) Reduction of perinatal hypoxic-ischemic brain damage with allopurinol. Pediatr Res 27:332–336

    PubMed  CAS  Google Scholar 

  • Palmer HJ, Paulson KE (1997) Reactive oxygen species and antioxidants in signal transmission and gene expression. Nutr Rev 55:353–361

    PubMed  CAS  Google Scholar 

  • Panganamala RV, Sharma HM, Heikkila RE, Green JC, Cornwell DG (1976) Role of hydroxyl radical scavengers, dimethyl sulfoxide, alcohols, and methional in inhibition of prostaglandin synthesis. Prostaglandins 11:599–607

    PubMed  CAS  Google Scholar 

  • Panter SS, Braughler JM, Hall ED (1992) Dextran-coupled deferoxamine improves outcome in a murine model of head injury. J Neurotrauma 9:47–53

    PubMed  CAS  Google Scholar 

  • Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F (1990) Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci 10:1035–1041

    PubMed  CAS  Google Scholar 

  • Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U (1998) Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:196–205

    PubMed  CAS  Google Scholar 

  • Peyser CE, Folstein M, Chase GA, Starkstein S, Brandt J, Cockrell JR, Bylsma F, Coyle JT, McHugh PR, Folstein SE (1995) Trial of D-α-tocopherol in Huntington’s disease. Am J Psychiat 152:1771–1775

    PubMed  CAS  Google Scholar 

  • Phillis JW (1989) Oxypurinol attenuates ischemia-induced hippocampal damage in the gerbil. Brain Res Bull 23:467–470

    PubMed  CAS  Google Scholar 

  • Phillis JW, Clough-Helfman C (1990) Oxypurinol, but not deoxycoformycin, administered post-ischemia, protects against CA1 hippocampal damage in the gerbil. Int J Purine Pyrimid Res 1:31–35

    Google Scholar 

  • Phillis JW, Sen S (1993) Oxypurinol attenuates hydroxyl radical production during ischemia/reperfusion injury of the rat cerebral cortex: an ESR study. Brain Res 628:309–312

    PubMed  CAS  Google Scholar 

  • Phillis JW, Smith-Barbour M, Perkins LM, O’Regan MH (1994) Indomethacin modulates ischemia-evoked release of glutamate and adenosine from the rat cerebral cortex. Brain Res 652:353–356

    PubMed  CAS  Google Scholar 

  • Phillis JW, Sen S, Cao X (1994) Amflutizole, a xanthine oxidase inhibitor, inhibits free radical generation in the ischemic/reperfused rat cerebral cortex. Neurosci Lett 169:188–190

    PubMed  CAS  Google Scholar 

  • Phillis JW, Perkins LM, Smith-Barbour M, O’Regan MH (1995) Oxypurinol-enhanced post-ischemic recovery of the rat brain involves preservation of adenine nucleotides. J Neurochem 64:2177–2184

    PubMed  CAS  Google Scholar 

  • Phillis JW (1996) Cerebroprotective action of the phospholipase inhibitor quinacrine in the ischemia/reperfused gerbil hippocampus. Life Sci 58:PL97–PL101

    Google Scholar 

  • Phillis JW, O’Regan MH (1996) Mechanisms of glutamate and aspartate release in the ischemic rat cerebral cortex. Brain Res 730:150–164

    PubMed  CAS  Google Scholar 

  • Phillis JW, Estevez AY, O’Regan MH (1998) Protective effect of the free radical scavengers, dimethyl sulfoxide and ethanol, in cerebral ischemia in gerbils. Neurosci Lett 244:109–111

    PubMed  CAS  Google Scholar 

  • Porta EA (1991) Advances in age pigment research. Arch Gerontol Geriatr 12:303–320

    PubMed  CAS  Google Scholar 

  • Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM (1992) Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 267:24173–24176

    PubMed  CAS  Google Scholar 

  • Prehn J-HM, Karkoutly C, Nuglisch J, Peruche B, Krieglstein J (1992) Dihydrolipoate reduces neuronal injury after cerebral ischemia. J Cereb Blood Flow Metab 12:78–87

    PubMed  CAS  Google Scholar 

  • Pruijn FB, Haenen GRMM, Bast A (1991) Interplay between vitamin E, glutathione and dihydrolipoic acid in protection against lipid peroxidation. Fat Sci Technol 93:216–221

    CAS  Google Scholar 

  • Przedborski S, Kostic V, Jackson-Lewis V, Naini AB, Simonetti S, Fahn S, Carlson E, Epstein CT, Cadet JL (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci 12:1658–1667

    PubMed  CAS  Google Scholar 

  • Reddy TS, Bazan NG (1987) Arachidonic acid, stearic acid and diacylglycerol accumulation correlates with the loss of phosphatidylinositol 4,5-bisphosphate in cerebrum 2 seconds after electroconvulsive shock. Complete reversion of changes 5 minutes after stimulation. J Neurosci Res 18:449–455

    PubMed  CAS  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    PubMed  CAS  Google Scholar 

  • Rosenthal RE, Chanderbhan R, Marshall G, Fiskum G (1992) Prevention of post-ischemic brain lipid conjugated diene production and neurological injury by hydroxyethyl starch-conjugated deferoxamine. Free Rad Biol Med 12:29–33

    PubMed  CAS  Google Scholar 

  • Rothman SM, Yamada KA, Lancaster N (1993) Nordihydroguaiaretic acid attenuates NMDA neurotoxicity-action beyond the receptor. Neuropharmacol 32:1279–1288

    CAS  Google Scholar 

  • Rothstein JD, Bristol LA, Hosier B, Brown RH, Kuncl RW (1994) Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci USA 91:4155–4159

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Ohnishi ST, Ohnishi T, Ogawa R (1991) Protective effect of a new antioxidant on the rat brain exposed to ischemia-reperfusion injury: inhibition of free radical formation and lipid peroxidation. Free Rad Biol Med 11:385–391

    PubMed  CAS  Google Scholar 

  • Salganik RI, Solovyova NA, Dikalov SI, Grishaeva ON, Semenova LA, Popovsky AV (1994) Inherited enhancement of hydroxyl radical generation and lipid peroxidation in the S strain rats results in DNA rearrangements, degenerative diseases, and premature aging. Biochem Biophys Res Commun 199:726–733

    PubMed  CAS  Google Scholar 

  • Saluja I, O’Regan MH, Song D, Phillis JW (1999) Activation of cPLA2, PKC and ERKs in the rat cerebral cortex during ischemia/reperfusion. Neurochem Res 24:669–677

    PubMed  CAS  Google Scholar 

  • Sancesario G, Iannone M, Morello M, Nistico G, Bernardi G (1994) Nitric oxide inhibition aggravates ischemic damage of hippocampal but not of NADPH neurons in gerbils. Stroke 25:436–444

    PubMed  CAS  Google Scholar 

  • Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J, Cotman C, Pfeiffer W, Schneider LS, Thal LJ (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 336:1216–1222

    PubMed  CAS  Google Scholar 

  • Sasaki T, Nakagomi T, Kirino T, Tamura A, Noguchi M, Saito I, Takakura K (1988) Indomethacin ameliorates ischemic neuronal damage in the gerbil hippocampal CA1 sector. Stroke 19:1399–1403

    PubMed  CAS  Google Scholar 

  • Sato S, Tominaga T, Ohnishi T, Ohnishi ST (1994) Electron paramagnetic resonance study on nitric oxide production during brain focal ischemia and reperfusion in the rat. Brain Res 647:91–96

    PubMed  CAS  Google Scholar 

  • Savolainen H (1978) Superoxide dismutase and glutathione peroxidase activities in rat brain. Res Comm Chem Pathol Pharmacol 21:173–175

    CAS  Google Scholar 

  • Schulz JB, Henshaw DR, Siwek D, Jenkins BG, Ferrante RJ, Cipolloni PB, Kowall NW, Rosen BR, Beal MF (1995) Involvement of free radicals in excitotoxicity in vivo. J Neurochem 64:2239–2247

    PubMed  CAS  Google Scholar 

  • Scott BC, Aruoma OI, Evans PJ, O’Neill C, Vadervliet A, Cross CE, Tritschler H, Halliwell B (1994) Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation. Free Rad Res 20:119–133

    CAS  Google Scholar 

  • Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Ann Rev Cell Biol 10:373–403

    PubMed  CAS  Google Scholar 

  • Sen S, Goldman H, Morehead M, Murphy S, Phillis JW (1993) Oxypurinol inhibits free radical release from the cerebral cortex of closed head injured rats. Neurosci Lett 162:117–120

    PubMed  CAS  Google Scholar 

  • Sen S, Phillis JW (1993) Alpha-phenyl-tert-butyl-nitrone (PBN) attenuates hydroxyl radical production during ischemia/reperfusion injury of rat brain: an EPR study. Free Rad Res Comm 19:255–265

    CAS  Google Scholar 

  • Sen S, Goldman H, Morehead M, Murphy S, Phillis JW (1994) α-Phenyl-tert-butyl nitrone inhibits free radical release in brain concussion. Free Rad Biol Med 16:685–691

    PubMed  CAS  Google Scholar 

  • Shohami E, Shapira Y, Yadid G, Reisfeld N, Yedgar S (1989) Brain phospholipase A2 is activated after experimental closed head injury in the rat. J Neurochem 53:1541–1546

    PubMed  CAS  Google Scholar 

  • Shoulson I (1992) Antioxidant therapeutic strategies for Parkinson’s disease. Ann NY Acad Sci 648:37–41

    PubMed  CAS  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    PubMed  CAS  Google Scholar 

  • Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Ann Rev Pharmacol Toxicol 36:83–106

    CAS  Google Scholar 

  • Simpson RE, O’Regan MH, Perkins LM, Phillis JW (1992) Excitatory transmitter amino acid release from the ischemic rat cerebral cortex: effects of adenosine receptor agonists and antagonists. J Neurochem 58:1683–1690

    PubMed  CAS  Google Scholar 

  • Smith MA, Sayre LM, Monnier VM, Perry G (1995) Radical AGEing in Alzheimer’s disease. TINS 18:172–176

    PubMed  CAS  Google Scholar 

  • Sokol RJ (1989) Vitamin E and neurologic function in man. Free Rad Biol Med 6:189–207

    PubMed  CAS  Google Scholar 

  • Spector T (1988) Oxypurinol as an inhibitor of xanthine oxidase-catalyzed production of superoxide radical. Biochem Pharmacol 37:349–352

    PubMed  CAS  Google Scholar 

  • Stoll S, Hartmann H, Cohen SA, Muller WE (1993) The potent free radical scavenger α-lipoic acid improves memory in aged mice: putative relationship to NMDA receptor deficits. Pharmacol Biochem Behav 46:799–805

    PubMed  CAS  Google Scholar 

  • Sugita Y, Kondo T, Kanazawa A, Itou T, Mizuno Y (1993) Protective effect of FPF1070 (cerebrolysin) on delayed neuronal death in the gerbil-detection of hydroxyl radicals with salicylic acid (Japanese). No-to-Shinkei-Brain and Nerve 45:325–331

    PubMed  CAS  Google Scholar 

  • Suzuki J, Imaizumi S, Kayama T, Yoshimoto T (1985) Chemiluminescence in hypoxic brain — the second report, cerebral protective effect of mannitol, vitamin E and glucocorticoid. Stroke 16:695–700

    PubMed  CAS  Google Scholar 

  • Suzuki J, Mizoi AK, Oba M, Yoshimoto T (1987) Protective effect of phenytoin and its enhanced action by combined administration with mannitol and vitamin E in cerebral ischemia. Acta Neurochir 88:56–64

    PubMed  CAS  Google Scholar 

  • Tan S, Yokoyama Y, Dickens E, Cash TG, Freeman BA, Parks DA (1993) Xanthine oxidase activity in the circulation of rats following hemorrhagic shock. Free Rad Biol Med 15:407–414

    PubMed  CAS  Google Scholar 

  • Taylor MD, Meliert TK, Parmentier JL, Eddy LJ (1984) Pharmacological protection of reoxygenation damage to in vitro brain slice tissue. Brain Res 347:268–273

    Google Scholar 

  • Terada LS, Willingham IR, Rosandich ME, Leff JA, Kindt GW, Repine JE (1991) Generation of superoxide anion by brain endothelial cell xanthine oxidase. J Cell Physiol 148:191–196

    PubMed  CAS  Google Scholar 

  • The Parkinson’s Disease Study Group (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328:176–183

    Google Scholar 

  • Tritto I, Scognamiglio A, D’Andrea D, Eramo N, Elia PP, Simone CD, Exposito A, Violante A, Chiariello M, Ambrosio G (1995) Role of protein kinase C activation in oxygen radical induced preconditioning. Circulation 92:I-716–717

    Google Scholar 

  • Ushijima K, Miyazaki H, Morioka T (1986) Immunohistochemical localization of glutathione peroxidase in the brain of the rat. Resuscitation 13:97–105

    PubMed  CAS  Google Scholar 

  • Wei Q, Yeung M, Jurma OP, Anderson JK (1996) Genetic elevations of monoamine oxidase levels in dopaminergic PC12 cells results in increased free radical damage and sensitivity to MPTP. J Neurosci Res 46:666–673

    PubMed  CAS  Google Scholar 

  • Weissman BA, Kadar T, Brandeis R, Shapira S (1992) NG-Nitro-L-arginine enhances neuronal death following transient forebrain ischemia in gerbils. Neurosci Lett 146:139–142

    PubMed  CAS  Google Scholar 

  • White BC, Rafols JA, DeGracia DJ, Skjaerlund JM, Krause GS (1993) Fluorescent histochemical localization of lipid peroxidation during brain reperfusion. Acta Neuropathol (Berlin) 86:1–9

    CAS  Google Scholar 

  • Williams LR (1995) Oxidative stress, age-related neurodegeneration, and the potential for neurotrophic treatment. Cerebrovasc Brain Metabol Rev 7:55–73

    CAS  Google Scholar 

  • Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JH (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA 93:6670–6674

    Google Scholar 

  • Yamamoto M, Shina T, Vozumi T, Sogabe T, Yamada K, Kawasaki T (1983) A possible role of lipid peroxidation in cellular damage caused by cerebral ischemia and the protective effect of α-tocopherol administration. Stroke 14:977–982

    PubMed  CAS  Google Scholar 

  • Yang GY, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, Kamii H (1994) Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25:165–170

    PubMed  Google Scholar 

  • Yokoyama Y, Beckman JS, Beckman TK, Wheat JK, Cash TG, Freeman BA, Parks DA (1990) Circulating xanthine oxidase: potential mediator of ischemic injury. Am J Physiol 258:G564–G570

    Google Scholar 

  • Yoshida S, Busto R, Santiso M, Ginsberg M (1984) Brain lipid peroxidation induced by postischemic reoxygenation in vitro: effect of vitamin E. J Cereb Blood Flow Metab 4:466–469

    PubMed  CAS  Google Scholar 

  • Yoshida T, Limmroth V, Irikura K, Moskowitz MA (1994) The NOS inhibitor, 7-nitro-indazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 14:924–929

    PubMed  CAS  Google Scholar 

  • Young B, Runge JW, Waxman KS, Harrington T, Wilberger J, Muizelaar JP, Boddy A, Kupiec JW (1996) Effects of pegorgotein on neurologic outcome of patients with severe head injury. A multicenter, randomized controlled trial. JAMA 276:538–543

    PubMed  CAS  Google Scholar 

  • Yue T-L, Gu J-L, Lysko PG, Cheng H-Y, Barone FC, Feuerstein G (1992) Neuroprotective effects of phenyl-t-butyl-nitrone in gerbil global brain ischemia and in cultured rat cerebellar neurons. Brain Res 574:193–197

    PubMed  CAS  Google Scholar 

  • Zaleska MM, Floyd RA (1985) Regional lipid peroxidation in rat brain in vitro. Possible role of endogenous iron. Neurochem Res 10:397–410

    PubMed  CAS  Google Scholar 

  • Zhang F, Iadecola C (1993) Nitroprusside improves blood flow and reduces brain damage after focal ischemia. Neuroreport 4:559–562

    PubMed  CAS  Google Scholar 

  • Zhang J-R, Andrus PK, Hall ED (1993) Age-related changes in hydroxyl radical stress and antioxidants in gerbil brain. J Neurochem 61:1640–1647

    PubMed  CAS  Google Scholar 

  • Zhao Q, Pahlmark K, Smith ML, Siesjo BK (1994) Delayed treatment with the spin trap α-phenyl-N-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol Scand 152:349–350

    PubMed  CAS  Google Scholar 

  • Zhou X, Zhai X, Ashraf M (1996) Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation 93:1177–1184

    PubMed  CAS  Google Scholar 

  • Zimmerman BJ, Parks DA, Grisham MB, Granger DN (1988) Allopurinol does not enhance antioxidant properties of extracellular fluid. Am J Physiol 255: H202–H206

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phillis, J.W. (2002). Neuroprotection by Free Radical Scavengers and Other Antioxidants. In: Marcoux, F.W., Choi, D.W. (eds) CNS Neuroprotection. Handbook of Experimental Pharmacology, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06274-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06274-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07625-1

  • Online ISBN: 978-3-662-06274-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics