Skip to main content

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 68))

Abstract

In 1990 Ji-Tao Wang and Jan-Otto Carlsson proposed the chemical pump model [5.1–5.6]. The key point of view of this model was the importance of inputting an external energy for steady diamond growth at low pressures. During activated diamond growth from the vapor phase at low pressure the external energy was carried into the system in the form of superequilibrium atomic hydrogen (SAH), which was atomic hydrogen in high concentration and hence with higher energy. Moreover, SAH inputted a kind of chemical energy selectively into a definite solid phase, so that the relative stabilities between solid phases (diamond and graphite) were changed. During the association of superequilibrium atomic hydrogen the energy was released in chemical form into the graphite phase, so that the chemical potential of carbon atoms of the graphite phase increased. This phenomenon was called a “chemical pump” effect. The chemical energy released during the association of superequilibrium atomic hydrogen changed graphite from a stable phase into a metastable phase, while diamond became a stable phase. That was the reason why diamond can grow steadily at activated low pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-T. Wang, J.-O. Carlsson: Surface and Coatings Technology, 43/44, 1–9 (1990)

    Google Scholar 

  2. J.-T. Wang: Thin Film Science and Technology, 4 (3), 54–67 (1991)

    Google Scholar 

  3. J.-T. Wang: ‘Three Theoretical Models for Chemical Vapor Depositon’. In: Thin Solid Films, 3rd National Conference at Guiling, China, Nov. 9–14, 1992, ed. by Chinese Electronics Society ( Guangxi Normal University, Guiling 1992 ) pp. 10–13

    Google Scholar 

  4. J.-T. Wang, P.-J. Zheng, C.-B. Cao, G.-Y. Li: ‘A chemical pump model for diamond growth from the vapor phase’. In: Diamond Materials, 3rd International Symposium at Honolulu, Hawaii, May 16–21, 1993, ed. by J.P. Dismukas, K.V. Ravi, K.E. Spear, B. Lux, N. Setaka (The Electrochemical Society, Inc., Pennington, New Jersey 1993) PV93–17, pp. 962–967

    Google Scholar 

  5. J.-T. Wang, P.-J. Zheng: ‘Thermodynamic coupling model for low pressure diamond syntheses’. In: Proc. of International Union of Materials Research Society, International Conference in Asia, Supplementary Issue of Chinese J. of Mater. Res. (I), at Wuhan-Chongqing, Sept. 6–10, 1993, ed. by Y.-F. Han, Y. Huang, J.-M. Tian, P.-X. Wang, (Supp. Issue of Chinese J. of Mater. Res., 1994, vol. 1 ) pp. 363–368

    Google Scholar 

  6. J.-T. Wang, C.-B. Cao, P.-J. Zheng: J. Electrochem. Soc. 141 (1), 278–281 (1994)

    Article  Google Scholar 

  7. B. Nolang: Thesis, University of Uppsala, Faculty of Science, Uppsala (1983)

    Google Scholar 

  8. D. R. Stull et al., JANAF Thermochemical Table, 2nd ed. ( US Government Printing Office, Washington 1971 )

    Google Scholar 

  9. M.W. Chase Jr., C.A. Davies, J.R. Downey Jr, D.J. Frurip, R.A. McDonald, A.N. Syverud: JANAF Thermochemical Tables, American Chemical Society and American Institute of Physics, 3rd edn. (1986)

    Google Scholar 

  10. S. Matsumoto, Y. Sato, M. Tsutsumi, N. Setaka: J Materials Sci. 17, 3106–3112 (1982)

    Article  ADS  Google Scholar 

  11. J.-T. Wang, H. Wang, Q.-H. Yang, P.-J. Zheng: ‘Phase diagrams of stationary nonequilibrium states for low pressure diamond syntheses’. In: Materials Research Soc., Advanced Materials and Surface Techniques vol. III-3, ‘84 Materials Conference of Chinese Materials Research Society at Beijing, Nov. 11–15, 1994 ed. by G.-T. Zou, J.-J. Liu, S.-Z. Li ( Chemical Industry Press, Beijing 1995 ) pp. 190–195

    Google Scholar 

  12. J.-T. Wang: ‘Nonequilibrium thermodynamics for materials research’. In: Materials Research Soc., New Techniques for Materials Processing and Research vol. IV-2, ‘84 Materials Conference of Chinese Materials Research Society at Beijing, Nov. 11–15, 1994 ed. by X.-Y. Yuan, B.-L. Zhou, C.-X. Shi, H.-D. Li ( Chemical Industry Press, Beijing 1995 ) pp. 496–499

    Google Scholar 

  13. J.-T. Wang, P.-J. Zheng: Chinese Science Bulletin, English edn. 40(13), 1141–1143 (1995); Chinese edn. 40 (11), 1056 (1995)

    Google Scholar 

  14. J.-T. Wang, P.-J. Zheng, Q.-H. Yang, H. Wang: ‘Phase diagram calculations of non-equilibrium stationary states for CVD diamond growth’. In: Diamond Materials, 4th International Symposium at Reno, Nevada, May 21–26, 1995, ed. by K.V. Ravi & J.P. Dismukas (The Electrochemical Society, Inc., Pennington, New Jersey 1995) PV95–4, pp.13–19

    Google Scholar 

  15. J.-T. Wang: Thin Film Science and Technology 8 (3), 275 (1995)

    Google Scholar 

  16. J.-T. Wang, Z.-Q. Huang, Q.-H. Yang, D.W. Zhang, Y.-Z. Wan: ‘Non-equilibrium thermodynamic coupling model for activated CVD diamond growth’. In: Chemical Vapor Deposition, 13th International Conference at Los Angeles, May 5–10, 1996, ed. by T.M. Besmann, M.D. Allendorf, McD. Robinson, R.K. Ulrich (The Electrochemical Society, Inc., Pennington, New Jersey 1996) PV96–5, pp.727–732

    Google Scholar 

  17. J.-T. Wang, D.W. Zhang, Y.-Z. Wan, Z.-Q. Huang: ‘Calculated Phase Diagrams for Activated Low Pressure Diamond Growth from C-H Projective and cross sectional phase diagrams for activated CVD diamond growth’. In: Materials Research, Functional Materials vol. I-3, ‘86 Fall Meeting of Chinese Materials Research Society, Section C, at Beijing, 1996 ( Chemical Industry Press, Beijing 1997 ) pp. 552–555

    Google Scholar 

  18. J.-T. Wang, Z.-Q. Huang, Y.-Z. Wan, D.W. Zhang, Q.-H. Yang: Chinese Science Bulletin, English edn. 42(11): 967–968 (1997); Chinese edn. 42 (7): 783–784 (1997)

    Google Scholar 

  19. J.-T. Wang, Y.-Z. Wan, D.W. Zhang, Z.-Q. Huang, P.-J. Zheng: Progress in Nature Science, English edn. 7(3), 265–271 (1997); Chinese edn. 7 (4), 392–396 (1997)

    Google Scholar 

  20. J.-T. Wang, D. W. Zhang, Z.-J. Liu: Thermodynamic Coupling Model for Low Pressure Diamond Growth from the Vapor Phase, 175 pages (Science Press, Beijing 1998 and reprinted in 2000 )

    Google Scholar 

  21. S.-X. Zou, J.-T. Wang: ‘Chap. 42 Plasma Enhanced Chemical Vapor Deposition (PCVD)’. In: Handbook of Materials Surface Technology and Applications. ed. By M.-G. Qian ( Mechanical Industry Press, Beijing 1998 ) pp. 757–775

    Google Scholar 

  22. J.-T. Wang: ‘Chap. 2 Nonequilibrium Thermodynamics of Diamond Film Growth’. In: Some New Film Materials. ed. by J.-L. Wu, Q.-D. Wu ( Beijing University Press, Beijing 1999 ) p. 24–38

    Google Scholar 

  23. J.-T. Wang, D.W. Zhang, Y.-Z. Wan: ‘Chapter 5 Thermodynamic Calculations for the Low Pressure Diamond Growth from the Vapor Phase’. In: Computerized Chemistry of Metallurgy and Materials. ed. by Z.-Y. Qiao, Z.-H. Xu, H.-L. Liu ( Metallurgical Industry Press, Beijing 1999 ) pp. 129–146

    Google Scholar 

  24. J.-T. Wang: ‘Chap. 9 Chemical Vapor Deposition and Related Theories in Inorganic Synthesis and Materials Preparation’. In: Inorganic Synthesis and Preparation Chemistry. ed. by R.-R. Xu, W.-Q. Peng ( Higher Education Press, Beijing, 2001 ) pp. 257–285

    Google Scholar 

  25. D. Burk: J. Phys. Chem. 35, 432 (1931)

    Article  Google Scholar 

  26. Th. De Donder, P. Van Rysselberghe: Thermodynamic Theory of Affinity — A book of principles, 2nd edn. ( Stanford University Press, Stanford 1936 )

    Google Scholar 

  27. S. Glasstone: Textbook of Physical Chemistry, 2nd edn. (1946) p.466

    Google Scholar 

  28. D. Feng: Dictionary of Solid Physics ( High Education Press, Beijing 1995 ) p. 893

    Google Scholar 

  29. D. Jou, J. Casas-Vazquez, M. Criado-Sancho: Thermodynamics of fluids under flow ( Springer, Berlin 2000 )

    Google Scholar 

  30. Y. Sato Y, et al.: Surface and Coatings Tech. 39/40, 183–198 (1989)

    Google Scholar 

  31. P. Southworth et al.: ‘In: Diamond Materials, 3rd Intern’l Symp. at Honolulu, Hawaii 1993, pp. 87–94

    Google Scholar 

  32. J.-Y. Zhang, P.-F. Wang, S.-J. Ding, D.W. Zhang, J.-T. Wang, Z.-J. Liu: Thin Solid Films 368 (2), 266–268 (2000)

    Article  ADS  Google Scholar 

  33. K. Kobashi, K. Nishimura, Y. Kawate et al.: Phys. Rev. B. 38, 4067 (1988)

    Article  ADS  Google Scholar 

  34. B.V. Spitsyn: ‘Chap. 10 Growth of Diamond Films from the Vapor Phase’. In: Handbook of Crystal Growth, vol.1, ed. by D.T.J. Hurle (Elsevier Science, Amsterdam 1994 ) pp. 403–456

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, JT. (2002). Reaction Coupling Model. In: Nonequilibrium Nondissipative Thermodynamics. Springer Series in Chemical Physics, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04829-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04829-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07674-9

  • Online ISBN: 978-3-662-04829-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics