Skip to main content

Crack Initiation, Wear and Molecular Structure of Filled Vulcanized Materials

  • Chapter
Deformation and Fracture Behaviour of Polymers

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In their numerous areas of application, elastomer materials are subject to a number of complex wear factors. A typical example of this phenomenon is the abrasion of the tread of a tyre or the pattern of chipping and chunking damage observed under certain circumstances on truck tyre treads [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Udagawa Y., Kawakami (1990): Structural changes in rubber vulcanizates caused by different types of deformation. In: Proceedings of the Rubber Division Meeting, ACS, Washington DC, USA, October 9–12, Paper No. 62

    Google Scholar 

  2. Ward I. M. (1971): Mechanical Properties of Solid Polymers. Wiley-Interscience, London

    Google Scholar 

  3. Heinrich G., Kramer T., Grellmann W. (1996): Crack initiation, wear and molecular structure of filled vulcanized materials. In: Proceedings of `Kautschuk-Herbstkolloquium ‘86’, Hannover, Germany, October 24–26: B 1–8

    Google Scholar 

  4. Grellmann W., Cäsar T., Heinrich G. (1999): Mechanical properties, crack initiation and molecular structure of filled polymeric materials. Kautsch. Gummi Kunstst. 52: 37–43

    Google Scholar 

  5. Gent A. N. (Ed.) (1992): Engineering with Rubber. Hanser, Munich, Vienna

    Google Scholar 

  6. Gent A. N. (1989): A hypothetical mechanism for rubber abrasion. Rubber Chem. Technol. 60: 750–756

    Google Scholar 

  7. Schweitz J.-A., Ahman L. (1986): Mild wear of rubber-based composites. In: Friedrich K. (Ed.) Friction and Wear of Polymer Composites. Composites Material Series, 1, Elsevier, Amsterdam

    Google Scholar 

  8. Veith A. G. (1992): A review of important factors affecting treadwear. Rubber Chem. Technol. 65: 601–658

    Google Scholar 

  9. Zhang S. W. (1984): Mechanisms of rubber abrasion in unsteady state. Rubber Chem. Technol. 57: 755–768

    Google Scholar 

  10. Gent A. N., Pulford C. T. R. (1983): Mechanisms of rubber abrasion. J. Appl. Polym. Sci. 28: 943–960

    Google Scholar 

  11. Thavamami P., Bhowmick A. K. (1994): Universal relationship between abradability and breaking energy, shear loss modulus and ridge spacing. Rubber Chem. Technol. 67: 129–136

    Google Scholar 

  12. Lake G. J. (1995): Fatigue and fracture of elastomers. Rubber Chem. Technol. 68: 435–460

    Google Scholar 

  13. Heinrich G., Straube E., Helmis G. (1988): Rubber elasticity of polymer networks: theories. Adv. Polym. Sci. 85: 33–88

    Google Scholar 

  14. Lee R. F., Donovan J. A. (1987): J-integral and crack opening displacement as crack initiation criteria in natural rubber in pure shear and tensile specimens. Rubber Chem. Technol. 60: 674–688

    Google Scholar 

  15. Liu H., Lee R. F., Donovan J. A. (1987): Effect of carbon black on the J-integral and strain energy in the crack tip region in a vulcanized natural rubber. Rubber Chem. Technol. 60: 893–909

    Google Scholar 

  16. Fukahori Y., Seki W. (1994): Stress analysis of elastomeric materials at large extensions using the finite element method Part III. J. Mat. Sci. 29: 2767–2774

    Google Scholar 

  17. Rivlin R. S., Thomas A. G. (1953): J. Polym. Sci. 10: 291ff

    Google Scholar 

  18. Rice J. R. (1968): Trans. ASME, Ser. E 35: 4ff

    Google Scholar 

  19. Andrews E. H. (1963): Reinforcement of rubber by fillers. Rubber Chem. Technol. 36: 325–336

    Google Scholar 

  20. Kadir A., Thomas A. G. (1981): Tear behavior of rubbers over a wide range of rates. Rubber Chem. Technol. 54: 15–24

    Google Scholar 

  21. Chun H., Gent A. N. (1996): Strength of sulphur-linked elastomers. Rubber Chem. Technol. 70: 577–590

    Google Scholar 

  22. Bhowmick A. K., Gent A. N., Pulford C. T. R. (1983): Tear strength of elastomers under threshold conditions. Rubber Chem. Technol. 56: 226–232

    Google Scholar 

  23. Lake G. J., Thomas A. G. (1967): Proc. R. Soc. London, Ser. A 300: 108ff

    Google Scholar 

  24. Begley J. A., Landes J. D. (1972): The J-integral as a fracture criterion. In: ASTM STP 514: 1–20 and 24–29

    Google Scholar 

  25. Heinrich G. (1992): Dynamics of carbon black filled networks, viscoelasticity, and wet skid behaviour. Kautsch. Gummi Kunstst. 45: 173–180

    Google Scholar 

  26. Klöppel M., Heinrich G. (1995): Fractal structures in carbon black reinforced rubbers. Rubber Chem. Technol. 68: 623–651

    Google Scholar 

  27. Lake G. J., Lindley P. B. (1964): Ozone cracking, flex cracking and fatigue of rubber. Rubber J. 146, 10: 24–30; 11: 30–36

    Google Scholar 

  28. Gent A. N., Pulford C. T. R. (1984): Micromechanics of fracture in elastomers. J. Mat. Sci. 19: 3612ff

    Google Scholar 

  29. Hamed G. R. (1994): Molecular aspects of the fatigue and fracture of rubber. Rubber Chem. Technol. 67: 529–536

    Google Scholar 

  30. Mazich K. A., Samus M. A. (1990): Role of entanglement couplings in threshold fracture of a rubber network. Macromolecules 23: 2478ff

    Google Scholar 

  31. Edwards S. F., Vilgis T. A. (1988): The tube model of rubber elasticity. Rep. Prog. Phys. 51: 243ff

    Google Scholar 

  32. Donald, A. M., Kramer E. J. (1976): J. Polym. Sci.: Polym. Phys. 14: 1701ff

    Google Scholar 

  33. Dettenmaier M. (1983): Intrinsic crazes in polycarbonate. Phenomenology and molecular interpretation of a new phenomena. Adv. Polym. Sci. 52 /53: 57–104

    Article  Google Scholar 

  34. Heinrich G., Vilgis T. A. (1993): Contribution of entanglements to the mechanical properties of carbon black filled polymer networks. Macromolecules 26: 1109–1119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grellmann, W., Heinrich, G., Cäsar, T. (2001). Crack Initiation, Wear and Molecular Structure of Filled Vulcanized Materials. In: Grellmann, W., Seidler, S. (eds) Deformation and Fracture Behaviour of Polymers. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04556-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04556-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07453-0

  • Online ISBN: 978-3-662-04556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics