Skip to main content

Probability makes counting (sometimes) easy

  • Chapter
Proofs from THE BOOK

Abstract

Just as we started this book with the first papers of Paul Erdős in number theory, we close it by discussing what will possibly be considered his most lasting legacy — the introduction, together with Alfred Rényi, of the probabilistic method. Stated in the simplest way it says:

If, in a given set of objects, the probability that an object does not have a certain property is less than 1, then there must exist an object with this property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai, V. Chvátal, M. Newborn & E. Szemerédi: Crossing-free subgraphs, Annals of Discrete Math. 12 (1982), 9–12.

    MATH  Google Scholar 

  2. N. Alon & J. Spencer: The Probabilistic Method, Second edition, Wiley-Interscience 2000.

    Google Scholar 

  3. P. Erdős: Some remarks on the theory of graphs, Bulletin Amer. Math. Soc. 53 (1947), 292–294.

    Article  Google Scholar 

  4. P. Erdős: Graph theory and probability, Canadian J. Math. 11 (1959), 34–38.

    Article  Google Scholar 

  5. P. Erdős: On a combinatorial problem I, Nordisk Math. Tidskrift 11 (1963), 5–10.

    Google Scholar 

  6. P. Erdős & R. K. Guy: Crossing number problems, Amer. Math. Monthly 80 (1973), 52–58.

    Article  MathSciNet  Google Scholar 

  7. P. Erdős & A. RÉnyt: On the evolution of random graphs, Magyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960), 17–61.

    Google Scholar 

  8. T. Leighton: Complexity Issues in Vlsi, MIT Press, Cambridge MA 1983.

    Google Scholar 

  9. L. A. Székely: Crossing numbers and hard Erdos problems in discrete geometry, Combinatorics, Probability, and Computing 6 (1997), 353–358.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aigner, M., Ziegler, G.M. (2001). Probability makes counting (sometimes) easy. In: Proofs from THE BOOK. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04315-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04315-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04317-2

  • Online ISBN: 978-3-662-04315-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics