Skip to main content

The Separation of Gravitation and Inertia in the First-Order Gradient

  • Conference paper
Gravity, Geoid and Marine Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 117))

  • 429 Accesses

Abstract

The authors explored the possibility of separating gravitation from inertia in the first-order gradients of the gravitational potential in the light of general relativity. It is proposed to choose an inertial platform as a tetrad and let the accelerometers be fixed with the inertial platform. The force experienced by the inertial platform can be directly measured by the accelerometers. Since the Riemannian tensor components R 0i0j could be locally measured by gradiometers, one can determine the first-order gradients of the gravitational potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boedecker G (1985) Gravity Vector Recovery by Inertial Geodesy-Why and How Is It Possible? In: Schwarz K P (ed), Proc. 3th Intern. Symp. on Inertial Technology for Surveying and Geodesy, Calgary, Canada, pp. 85–103.

    Google Scholar 

  • Britting K R (1971) Inertial Navigation Systems Analysis. Wiley-Interscience, New York.

    Google Scholar 

  • Dahlquist B (1972) Numerische Methoden. R. Oldenbourg Verlag, München.

    Google Scholar 

  • Goldsborough R G, Fundak L T (1985) The Gravity Gradiometer Survey System. In: Schwarz K P (ed), Proc. 3th Intern. Symp. on Inertial Technology for Surveying and Geodesy, Calgary, Canada, pp. 653–656.

    Google Scholar 

  • Grafarend E W (1981) From Kinematical Geodesy to Inertial Positioning. Bull. Géod., V. 55, pp. 286–299.

    Article  Google Scholar 

  • Jekeli C et al. (1985) A Review of Data Processing in Gravity Gradiometry. In: Schwarz K P (ed), Proc. 3th Intern. Symp. on Inertial Technology for Surveying and Geodesy, Calgary, Canada, pp. 675–685.

    Google Scholar 

  • Jordan S K (1985) Status of Moving-Base Gravity Gradiometrey. In: Schwarz K P (ed), Proc. 3th Intern. Symp. on Inertial Technology for Surveying and Geodesy, Calgary, Canada, pp. 639–647.

    Google Scholar 

  • Mason M J (1987) Numerical Analysis ( second ed. ). Macmillan Publishing Company, New York.

    Google Scholar 

  • Moritz H (1967) Kinematical Geodesy. Report No. 92, Dept. of Geodesic Science, Ohio State University, Columbus.

    Google Scholar 

  • Moritz H (1968) Kinematical Geodesy. Reihe A: Höhere Geodäsie—Heft Nr. 59.

    Google Scholar 

  • Moritz H, Hofmann-Wellenhof B (1993), Geometry, Relativity, Geodesy. Wichmann, Karlsruhe.

    Google Scholar 

  • Mueller I I (1981) Inertial Survey Systems in the Geodetic Arsenal. Bull. Géod., V. 55, pp. 272–285.

    Article  Google Scholar 

  • Rummel R., Colombo 0 L (1985) Gravity Field Determination from Satellite Gradiometry. Bulletin Géodésique, V. 59, pp. 233–246.

    Article  Google Scholar 

  • Schwarz K P (1981) A Comparison of Models in Inertial Surveying. Bull. Géod., V. 55, pp. 300–314.

    Article  Google Scholar 

  • Schwarz K P (1985) Inertial Modelling—A Survey of Some Open Problems. In: Schwarz K P (ed), Proc. 3th Intern. Symp. on Inertial Technology for Surveying and Geodesy, Calgary, Canada.

    Google Scholar 

  • Shen W (1996) On the Separability of Gravitation and Inertia According to General Relativity. Dissertation, Graz University of Technology.

    Google Scholar 

  • Shen W, Moritz H (1996a) On the Separation of Gravitation and Inertia and the Determination of the Relativistic Gravity Field in the Case of Free Motion. Journal of Geodesy, V. 70, pp. 633–644.

    Google Scholar 

  • Shen W, Moritz H (1996b) On the Separation of Gravitation and Inertia in Airborne Gradiometry. Bollettino di Geodesia e Scienze Affini, V. 55, N. 2, pp. 145–159.

    Google Scholar 

  • Wang Y (1987) The Gradiometer-Gravimeter Equation in Various Coordinate Systems. Bull. Géod., V. 61, pp. 125–144.

    Article  Google Scholar 

  • Weinberg S (1972) Gravitation and Cosmology. John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, W., Moritz, H. (1997). The Separation of Gravitation and Inertia in the First-Order Gradient. In: Segawa, J., Fujimoto, H., Okubo, S. (eds) Gravity, Geoid and Marine Geodesy. International Association of Geodesy Symposia, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03482-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03482-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08328-0

  • Online ISBN: 978-3-662-03482-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics