Skip to main content

Formal Verification of Robustness

  • Chapter
  • First Online:
Formal Modeling and Verification of Cyber-Physical Systems
  • 1583 Accesses

Abstract

Due to the decreasing size of transistors, the probability of transient errors and the variability of the transistor’s characteristics in electrical circuits are continuously increasing. These issues demand for techniques to check the robustness of circuits and their behavior under transient faults and variability. Furthermore, the implementation of methods that provide robustness are prone to implementation errors. Checks are needed to verify that the nominal behavior of the system did not change due to modifications that are meant to provide robustness. Solutions for both problems are presented in this work.

This work was supported by the Graduate School SyDe, funded by the German Excellence Initiative within the University of Bremen’s institutional strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Black, J.D., Cressler, J.D., Mantooth, H.A.: Best practices in radiation hardening by design: CMOS. In: Extreme Environment Electronics, pp. 475–483. CRC Press (2013)

    Google Scholar 

  2. Bryan, D.: The ISCAS’85 benchmark circuits and netlist format. North Carolina State University (1985)

    Google Scholar 

  3. Sauer, M., Czutro, A., Polian, I., Becker, B.: Small-delay-fault ATPG with waveform accuracy. In: Proceedings of the International Conference on Computer-Aided Design. pp. 30–36 (2012)

    Google Scholar 

  4. Sterpone, L., Sonza Reorda, M., Violante, M., Kastensmidt, F., Carro, L.: Evaluating different solutions to design fault tolerant systems with SRAM-based FPGAs. Journal of Electronic Testing pp. 47-54 (2007)

    Google Scholar 

  5. Thole, N., Fey, G.: Equivalence checking on system level using stepwise induction. In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen. pp. 197–200 (2014)

    Google Scholar 

  6. Thole, N., Fey, G., Garcia-Ortiz, A.: Analyzing an set at gate level using a conservative approach. Accepted at Testmethaden und Zuverliissigkeit van Schaltungen und Systemen (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Thole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Thole, N., Fey, G. (2015). Formal Verification of Robustness. In: Drechsler, R., Kühne, U. (eds) Formal Modeling and Verification of Cyber-Physical Systems. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-09994-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-09994-7_21

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-09993-0

  • Online ISBN: 978-3-658-09994-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics