Skip to main content

The Mainz Cluster Trap

Ion storage techniques at work in atomic cluster research

  • Conference paper
Book cover The European Physical Journal D

Abstract

When cluster ions are stored by electromagnetic forces they are available in the gas phase for extended preparations and investigations. Over the last decade a Penning trap (Ion Cyclotron Resonance) apparatus has been constructed and further developed with respect to metal cluster research at the Institute of Physics at Mainz. It allows to capture and accumulate ion bunches injected from an external cluster source and to manipulate the ions motion, i.e. select and center the clusters of interest. The interactions that have been investigated include those with inert and chemically reactive gases, photons and electrons. Multiple mass spectrometric steps such as fragment ion selection can be used to disentangle complex reactions or interfering reaction channels. A brief introduction into the principles of ion trapping and a short overview of the history and experimental setup at Mainz are given. The advantages of ion storage with respect to extended preparation of the trapped cluster ensemble and with respect to extended reaction periods are exemplified by measurements of the collision induced dissociation of Ag 2+16 and by time-resolved observation of the photodissociation of V +12 , References are given both to the investigations performed at the Mainz Cluster Trap as well as to other experimental arrangements and measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See previous ISSPIC proceedings, e.g. Z. P1 s. D 19–20 (1991), ibid. 26 (1993)

    Google Scholar 

  2. Surf. Rev. Lett. 3 (1996), Z. Phys. 35 D 40 (1997)

    Google Scholar 

  3. K.L. Busch, G.L. Glish, S.A. McLuckey: Mass Spectrometry-Mass Spectrometry (VCH, Weiriheirri 1988 )

    Google Scholar 

  4. P. Hyelplund Eur. Phys. J. D, this issue 36.

    Google Scholar 

  5. L.S. Brown, G. Gabrielse: Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  6. R.E. March, R.J, Hughes: Quadrupole Storage Mass Spec- 37. trometry ( John Wiley and Sons, New York 1989 ) 38.

    Google Scholar 

  7. A.G. Marshall, L. Schweikhard: Int; J. Mass Spectrom. Ion Processes 118–119, 37 (1992)

    Google Scholar 

  8. R.F. Wuerker: J. AppL Phys. 30. 342 (1959) 39.

    Google Scholar 

  9. D.B. Cameron, J.H. Parks: Chem. Phys. Lett, 272, 18 (1997) 40.

    Google Scholar 

  10. M. Maier-Borst; D.B. Cameron, M. Rokni, J.H. Parks: Phys. Rev. A 59; R3162 (1999)

    Google Scholar 

  11. S. Wolfeth: Phys. Rev. Lett. 74. 4177 (1995); L. Wtiste: 41.

    Google Scholar 

  12. S. Wolfeth: Z. Phys. Chem. 196, 1 (1996) 42.

    Google Scholar 

  13. D. Geruch: Phys. Scr. T 59, 256 (1995)

    ADS  Google Scholar 

  14. L. Schweikhard: Int. J. Mass Spectrom. Ion Processes 43. 141, 77 (1995)

    Article  ADS  Google Scholar 

  15. L. Schweikhard, A.G. Marshall- J. Am, Soc. Spec- 44. tram. 4, 433 (1993)

    Google Scholar 

  16. G. Bollen: J. Appl, Phys. 68, 43: 55 (1990) 45.

    Google Scholar 

  17. G. Savard: Phys. Lett. A 158, 247 (1991) 46.

    Google Scholar 

  18. M.B. Coniisarow; A.G. Marshall: Chem. Phys: Lett. 25, 47. 282 (1974)

    Google Scholar 

  19. A.G. Marshall. F.R. Verdun: Fourier Transforms ia N.ì1R, Optical, and Mass Spectrometry ( Elsevier, Amsterdam 1990 )

    Google Scholar 

  20. H.-J. Kluge: Z. Phys. D 3, 189 (1986)

    Article  ADS  Google Scholar 

  21. G. Dietrich: Cheng. Phys. Lett, 252. 141 J. Mass Spectrom. Ion Processes 157–158, 319

    Google Scholar 

  22. St. Becker: Int., J. Mass Spectroin. Ion Processes 99, 53 (1990)

    Google Scholar 

  23. G. Bollen et al,: Nucl.Instri.un, Methods A 368, 675 (1996)

    Google Scholar 

  24. H. Sclinatz: Nucl his.1 lléthods A 251. 17 (1986)

    Google Scholar 

  25. A. de Heer: Rev. Mod. Phys. 65, 611 (1993); M. Brack, ibtd. 65, 677 (1993)

    Article  Google Scholar 

  26. L. Schweikhard: Rev. Sci. Instrum. 60. 2637. (1989)

    Article  ADS  Google Scholar 

  27. Hibid. 61. 1055 (1990); Int. J. Mass Spectrom. Ion Processes 89 (19889)

    Google Scholar 

  28. Rapid Connlnni. Mass Spectrorr, 4, 360 (1299)

    Google Scholar 

  29. J.M. Alford: Int. J. Mass Spectrum. Ion Processes 72. 33 (1986)

    Article  Google Scholar 

  30. I.P. Irion, A, Seliiier: Z. Phys. Chem. 161. 233 (1989)

    Google Scholar 

  31. Irion: Int, J. Mass Spectrom. Ion Processes 96, 27 (1990)

    Google Scholar 

  32. M. Lindinger; Z. Phys. D 20, 441 (1991)

    Article  ADS  Google Scholar 

  33. Alber, Rev. Sci, Instrum, 64. 1845 (1993) St.

    Google Scholar 

  34. Becker: Rev. Sci. Instrum. 66, 4902 (1995)

    Google Scholar 

  35. L. Schweikhard: Phys. Scr. T 59. 236 (1995)

    Article  ADS  Google Scholar 

  36. H. Weidele et al,: Z. Phvs, D 20, 411 (1991)

    Google Scholar 

  37. H.-U, Hasse: Int. J. Mass Spectrom. Ion Processes 132, 181 (1994)

    Google Scholar 

  38. T. Schindler: Chem. Phys. Lett. 250, 301 (1996)

    Article  ADS  Google Scholar 

  39. Examples are given by P.A. Limbach: J. Am, Chem. Soc. 113. 6795 (1991)

    Google Scholar 

  40. H.S. Kim: Chem. Phys. Lett, 224, 589 (1994)

    Article  ADS  Google Scholar 

  41. S.A. Lee: ICR-Ion Trap NEWSLETTER. ed. by A.G. Marshall, Tallahassee, 30, 25 (1993)

    Google Scholar 

  42. S. Krückeberg et al: Lilt. J. Mass Spectrom. Ion Processes 155, 141 (1996)

    Google Scholar 

  43. S. Krückeberg: Hyperfine Interact. 108, 107 (1997)

    Article  ADS  Google Scholar 

  44. S. Krickeberg: Z. Phys, D 40, 341 (1997)

    Article  ADS  Google Scholar 

  45. P. Schnabel: J. Phys. Chem. 95, 9688 (1991)

    Article  Google Scholar 

  46. P. Schnabel: Angew. Chem. 104. 633 (1992)

    Article  Google Scholar 

  47. J.L. Elkind: J. Cheni. Phys. 88, 5215 (1988)

    Article  ADS  Google Scholar 

  48. St. Becker: Rapid Commun. Mass Spectrom. 8, 401 (1994).

    Google Scholar 

  49. St. Becker: Comput. Mater. Sci. 2, 633 (1994)

    Google Scholar 

  50. St. Becker: Z. Phys. D 30, 341 (1994)

    Google Scholar 

  51. G. Dietrich; Ber. Bunsenges. Phys. Chem. 98, 1608 (1994)

    Article  Google Scholar 

  52. L. Schweikhard: Hyperfine Interact. 99, 97 (1996)

    Article  ADS  Google Scholar 

  53. S. Krückeberg: Rapid Commun. Mass Spectrom. 11, 455 (1997)

    Article  Google Scholar 

  54. J. Ziegler et al,: Hyperfine Interact. 115, 171 (1998)

    Article  ADS  Google Scholar 

  55. L. SchweikhardRapid Commun. Mass Spectrom, 11. 1.592 (1997“)

    Google Scholar 

  56. S. Krückeberg Eur. Phys. J. D, fission lauriers, this issue

    Google Scholar 

  57. G. Dietrich: Cheng. Phys. Lett, 252. 141 J. Mass Spectrom. Ion Processes 157–158, 319

    Google Scholar 

  58. G. Dietrich: Chem. Phys. Lett. 259, 397 (1996)

    Article  ADS  Google Scholar 

  59. R. Rousseau et al,: Chem. Phys. Lett. 295, 41 (1998)

    Google Scholar 

  60. C. Walther: Z. Phys. D 38, 51 (1996)

    Article  ADS  Google Scholar 

  61. C. Walther Chem. Phys. Lett, 25, 77 (1996), 262.668 (1990):

    Google Scholar 

  62. M. Lindinger: Z. Phys: D 40, 347 (1997)

    Google Scholar 

  63. L. Schweikhard: Rapid Commun. Mass Spectrum. 11, 1624 (1997)

    Article  Google Scholar 

  64. U. Hild: Phys, Rev, A 57. 2786 (1998)

    Article  ADS  Google Scholar 

  65. H. Weidele: Surf. Rev. Lett. 3, 541 (1996)

    Article  Google Scholar 

  66. H. Veidele Eur. Phys. J. D, Coltisionaa activacion this issue C. Walther to be published

    Google Scholar 

  67. S. Krickeberg,: Electron induced this issue

    Google Scholar 

  68. A. Herlert, First observation of doubly charged negative gold cluster ions. Phys, Sec., in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia

About this paper

Cite this paper

Schweikhard, L., Krückeberg, S., Lützenkirchen, K., Walther, C. (1999). The Mainz Cluster Trap. In: Châtelain, A., Bonard, JM. (eds) The European Physical Journal D. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88188-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88188-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88190-9

  • Online ISBN: 978-3-642-88188-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics