Skip to main content

Electronic and magnetic structure of artificial atoms

  • Conference paper
The European Physical Journal D

Abstract

The concept of shell structure has been found useful in the description of semiconductor quantum dots, which today can be made so small that they contain less than 20 electrons. We review the experimental discovery of magic numbers and spin alignment following Hund’s rules in the addition spectra of vertical quantum dots, and show that these results compare well to model calculations within spin density functional theory. We further discuss the occurrence of spin density waves in quantum dots and quantum wires. For deformable two-dimensional quantum dots (for example, jellium clusters on surfaces), we study the interplay between Hund’s rules and Jahn—Teller deformations and investigate the effect of magnetic fields on the ground-state shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Ekardt: Phys. Rev. B 29, 1558 (1984)

    Article  ADS  Google Scholar 

  2. W. Knight et al.: Phys. Rev, Lett. 52, 2141 (1984)

    Article  ADS  Google Scholar 

  3. M. Brack: Rev. Mod. Phys. 65, 677 (1993)

    Article  ADS  Google Scholar 

  4. L.P. Kouwenhoven et al.: “Electron transport in quantum dots”, in Proceedings of the Advanced Study Institute on Illesoscopic Electron Transport,ed. by L.L. Sohn, L.P. Kouwenhoven, G. Schön (1997)

    Google Scholar 

  5. M.A. Kastner: Rev. Mod. Phys. 64, 849 (1992); Phys. To-clay 46, 24 (1993); R.C. Ashoori: Nature 379, 413 (1996)

    Google Scholar 

  6. M. Persson et al.: J. Phys. (Cond. Matter) 7, 3733 (1995); Physica B 194, 1273 (1994)

    Google Scholar 

  7. M. Brack, R. Bhaduri: “Semiclassical Physics”, in Frontiers in Physics, ed. by D. Pines, vol. 96 ( Addison, Reading, Massachusetts 1997 )

    Google Scholar 

  8. H. Nishioka, K. Hansen, B.R. Mottelson: Phys. Rev. B 42, 9377 (1990)

    Article  ADS  Google Scholar 

  9. S.M. Reimann et al.: Z. Phys. B 101, 377 (1996)

    Google Scholar 

  10. S. Tarucha et al.: Phys. Rev, Lett. 77, 3613 (1996)

    Google Scholar 

  11. D. Pfannkuche, V. Gudmundsson, P.A. Maksym: Phys. Rev. B 47, 2244 (1992); P. Hawulak, D. Pfannkuche: Phys. Rev. Lett, 70, 485 (1993); P.A. Maksyrn: Phys. Rev. B 53, 10 871 (1996)

    Google Scholar 

  12. M. Koskinen, M. Manninen, SM. Reimann: Phys. Rev. Lett. 79, 1389 (1997)

    Article  ADS  Google Scholar 

  13. T. Ezaki, N. Mori, C. Hamaguchi; Phys. Rev, B 56, 6428 (1997); S. Nagaraja et al.: Phys, Rev, B 56, 15 752 (1997); Iii-Ho Lee et al.: Phys. Rev. B 57, 9035 (1998);

    Google Scholar 

  14. YR. Zeng, B. Goodman, R.A. Serota: Phys, Rev. B 47, 15 660 (1992); 0. Steffens, U. Rössler, M. Suhrke: Europhys. Lett, 42, 529 (1998)

    Google Scholar 

  15. P. Hohenberg, W. Kohn: Phys. Rev. 136, 5864 (1964);

    Article  MathSciNet  Google Scholar 

  16. W. Kohn, L.J. Sham: Phys. Rev. 140, A1133 (1965);

    Article  ADS  MathSciNet  Google Scholar 

  17. U. von Barth, L. Hedin: J. Phys. C 5, 1629 (1972).

    Article  ADS  Google Scholar 

  18. S.M. Reimann et al.: Phys. Rev. B 56, 12 147 (1997); ibid. Phys. Rev. B 58, 8111 (1998)

    Google Scholar 

  19. S. Tarucha et al.: Superlattices Microstruct, 18, 121 (1995); D.G. rusting et al.: Semicond. Sci. Technol. 11, 388 (1996)

    Google Scholar 

  20. B. Tanatar, D.M. Ceperley: Phys. Rev, B 39, 5005 (1989)

    Article  ADS  Google Scholar 

  21. M. Ferconi, G. Vignale: Phys. Rev. B 50, 14 722 (1994); V. Gudruundsson, J.J. Palacios: Phys. Rev. B 52, 11 266 (1995); M.I. Lubin, O. Heinonen, M.D. Johnson; Phys. Rev. B 56, 10 373 (1997); Q. Heinonen, J.M. Kinaret, M.D. Johnson: [Cond-Mat/977121681; M. Pi et al.: Phys. Rev. B 57, 14 783 (1998)

    Google Scholar 

  22. The deviations at N = 14 and around N = 20 might generally be due to deformation of the quantum dot, which already for very small distortions changes the shell structure for larger N considerably

    Google Scholar 

  23. A.W. Overhauser: Phys.:Rev. Lett. 4, 462 (1960); Phys, Rev. 128,1437 (1962); Phys. Rev. 167, 691 (1968)

    Article  Google Scholar 

  24. S. Tarucha et al.: Jpn. J. Appl, Plays, 36, 3917 (1997)

    Google Scholar 

  25. K.J. Thomas et al.: Phys, Rev. Lett. 77, 135 (1996)

    Google Scholar 

  26. C.-K. Wang, K.-F. Berggren: Phys, Rev. B 57, 4. 552 (1998)

    Article  Google Scholar 

  27. N. Zabala, M.J. Puska, R.M. Nierninen: Phys. Rev. Lett. 80, 3336 (1998)

    Article  ADS  Google Scholar 

  28. H. Brune: Surf. Sci. Rep. 31, 121 (1998)

    ADS  Google Scholar 

  29. M.Y. Lai, Y.L. Wang: Phys. Rev. Lett. 81, 164 (1998)

    Article  ADS  Google Scholar 

  30. G. Vignale, M. Rasait: Phys. Rev. B 37, 10 685 (1988)

    Google Scholar 

  31. M. Koskinen et al.: contribution to these proceedings

    Google Scholar 

  32. A.H. McDonald, S.-R. Eric Yang, M.D. Johnson: Austr. J. Phys. 46, 345 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia

About this paper

Cite this paper

Reimann, S.M., Koskinen, M., Kolehmainen, J., Manninen, M., Austing, D.G., Tarucha, S. (1999). Electronic and magnetic structure of artificial atoms. In: Châtelain, A., Bonard, JM. (eds) The European Physical Journal D. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88188-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88188-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88190-9

  • Online ISBN: 978-3-642-88188-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics