Skip to main content
Book cover

Laser pp 49–86Cite as

Optische Resonatoren und Ausbreitungsgesetze für Laserstrahlen

  • Chapter

Zusammenfassung

Zum Aufbau eines Oszillators bei optischen Frequenzen benötigt man eine Resonanzstruktur hoher Güte für Lichtwellen. Solche Strukturen sollen im folgenden untersucht werden. Sie unterscheiden sich von den Resonatoren bei tieferen Frequenzen (z. B. im Mikrowellenbereich) dadurch, daß sie sehr groß gegen die Wellenlänge der verwendeten Strahlung sind, und daß üblicherweise nicht allseitig geschlossene Resonatoren verwendet werden.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Byxov, V. P., u. L. A. Vainsitein: Geometric optics of open resonators, Soviet Phys. JETP 20, 2 (1965) 338–344.

    Google Scholar 

  2. Fox, A. G.: Properties of optical cavity modes. Appl. Opt. Suppl. 2 on Chemical Lasers (1965) 58.

    Google Scholar 

  3. Vainshtein, L. A.: Open resonators with spherical mirrors. Soviet Phys. JETP 18, 2 (1964) 471–479.

    Google Scholar 

  4. Toraldo Di Francia, G.: Theory of optical resonators. Quantum Electronics and Coherent Light, ed. by P. A. MILES, New York/London: Academic Press 1964, 53–77.

    Google Scholar 

  5. Kogelnik, H., u. T. Li: Laser beams and resonators, Proc. IEEE 54,10 (1966) 1312–1329.

    Google Scholar 

  6. Silver, S.: Microwave antenna theory and design. MIT Radiation Laboratory Series, Vol. 12. McGraw-Hill 1949, 80ff.

    Google Scholar 

  7. Fox, A. G., u. T. Li: Resonant modes in a maser interferometer, Bell Syst. Techn. J. 40, 2 (1961) 453–488.

    Google Scholar 

  8. Boersch, H., G. Herzigeru. H. Lindner: Messung der Güte von Laserresonatoren. Phys. Letters 11, 1 (1964) 38–39.

    Article  ADS  Google Scholar 

  9. Kotik, J., u. C. Newstein: Theory of laser oscillations in Fabry-Perot-resonators. J. Appl. Phys. 32, 2 (1961) 178–186.

    Google Scholar 

  10. Barone, S. R.: Resonances of the Fabry-Perot-laser. J. Appl. Phys. 34, 4 (1963) 831–843.

    Article  ADS  Google Scholar 

  11. Toraldo Di Francia, G.: Flat-roof resonators. Appl. Opt. 4, 10 (1965) 1267–1270.

    Article  ADS  Google Scholar 

  12. Fox, A. G., u. T. Li: Modes in a maser interferometer with curved and tilted mirrors. Proc. IEEE 51, 1 (1963) 80–89.

    Article  Google Scholar 

  13. Risken, H.: Calculation of laser modes in an active Perot-Fabry-interferometer. Z. Phys. 180 (1964) 150–169.

    Article  ADS  Google Scholar 

  14. Li, T., u. J. G. Skinner: Oscillating modes in ruby lasers with nonuniform pumping energy distribution. J. Appl. Phys. 36, 8 (1965) 2595–2596.

    Google Scholar 

  15. Statz, H., u. C. L. Tang: Problem, of mode deformation in optical masers. J. Appl. Phys. 36, 6 (1965) 1816–1819.

    Google Scholar 

  16. Vainshtein, L. A.: Open resonators for lasers. Soviet Phys. JETP 17, 3 (1963) 709–719.

    MathSciNet  Google Scholar 

  17. Boyd, G. D., u. J. P. Gordon: Confocal multimode resonator for millimeter through optical wavelength masers. Bell Syst. Techn. J. 40, 2 (1961) 489–508.

    Google Scholar 

  18. Slepian, D., u. H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty — I., Bell Syst. Techn. J. 40 (1961) 43–64.

    MATH  Google Scholar 

  19. Flammer, C. Spheroidal wave functions. Stanford University Press, California 1957.

    Google Scholar 

  20. Meixner, J. u. F. W. Schäfke: Mathieusche Funktionen und Sphäroidfunktionen, Berlin/Göttingen/Heidelberg: Springer 1954.

    Google Scholar 

  21. Morse, P. M., u. H. Feshbach: Methods of theoretical physics I, II. McGraw-Hill 1953.

    Google Scholar 

  22. Boyd, G. D., u. H. Kogelnik: Generalized confocal resonator theory. Bell Syst. Techn. J. 41 (1962) 1347–1369.

    Google Scholar 

  23. Grau, G., D. RosenbergerH. L. Urankar. Schwingungstypen im He–Hg+-Laser mit p-zähliger Symmetrie. Entwicklungsberichte Siemens Halske 27, 3 (1964) 301–302.

    Google Scholar 

  24. Sneddon, I. N.: Spezielle Funktionen der mathematischen Physik und Chemie. Mathematische Formelsammlung II, B. I. Hochschultaschenbuch Bd. 54, Mannheim: Bibliographisches Institut 1963.

    Google Scholar 

  25. Rosenberger, D.: Schwingungstypenspektrum im He–Ne-Gaslaser AEU 17 (1963) 202–204.

    Google Scholar 

  26. Streifer, W.: Optical resonator modes — rectangular reflectors of spherical curvature. J. Opt. Soc. Am. 55, 7 (1965) 868–877.

    Article  ADS  Google Scholar 

  27. Heurtley, J. C., u. W. Streifer: Optical resonator modes — circular reflectors of spherical curvature. J. Opt. Soc. Am. 55, 11 (1965) 1472–1479.

    Google Scholar 

  28. Bergstein, L., u. H. Schachter: Resonant modes of optic cavities of small Fresnel numbers. J. Opt. Soc. Am. 55, 10 (1965) 1226–1233.

    MathSciNet  Google Scholar 

  29. Clark, P. O.: A self-consistent field analysis of spherical mirror Fabry-Perot-resonators. Proc. IEEE 53, 1 (1965) 36–41.

    Article  Google Scholar 

  30. Gloge, D.: Berechnung von Fabry-Perot-Resonatoren mit Streumatrizen. AEU 18 (1964) 197–203.

    Google Scholar 

  31. Gloge, D.: Ein allgemeines Verfahren zur Berechnung optischer Resonatoren und periodischer Linsensysteme. AEU 19 (1965) 13–26.

    Google Scholar 

  32. Cochran, J. A.: The existence of eigenvalues for the integral equations of laser theory. Bell Syst. Techn. J. 44 (1965) 77–88.

    MathSciNet  MATH  Google Scholar 

  33. Specht, W. A., JR.: Modes in spherical-mirror resonators. J. Appl. Phys. 36, 4 (1965) 1306–1313.

    Article  MathSciNet  ADS  Google Scholar 

  34. Vainshtein, L. A.: Open resonators with spherical mirrors. Soviet Phys. JETP 18, 2 (1964) 471–479.

    Google Scholar 

  35. Gordon, J. P.: A circle diagram for optical resonators. Bell Syst. Techn. J. 43, 7 (1964) 1826–1827.

    Google Scholar 

  36. Karube, N.: Calculated divergence of laser beam from generalized spherical mirror cavities. Proc. IEEE 52 (1964) 327–328.

    Article  Google Scholar 

  37. Harding, G. O., u. T. Li: Effect of mode degeneracy on ouput of gaseous optical masers. J. Appl. Phys. 35, 3 (1964) 475–478.

    Google Scholar 

  38. Siegman, A. E.: Unstable optical resonators for laser applications. Proc. IEEE 53 (1965) 277–287.

    Article  Google Scholar 

  39. Kahn, W. K.: Unstable optical resonators. Appl. Opt. 5, 3 (1966) 407–413.

    Article  MathSciNet  ADS  Google Scholar 

  40. Li, T.: Diffraction loss and selection of modes in maser resonators with circular mirrors. Bell Syst. Techn. J. 44, 5 (1965) 917–932.

    Google Scholar 

  41. Mc Cumber, D. E.: Eigenmodes of a symmetric cylindrical confocal laser resonator and their perturbation by output-coupling apertures. Bell Syst. Techn. J. 44, 2 (1965) 333–363.

    Google Scholar 

  42. Gordon, J. P., u. H. Kogelnik: Equivalence relations among spherical mirror optical resonators. Bell Syst. Techn. J. 48, 6 (1964) 2873–2886.

    Google Scholar 

  43. Kogelnik, H.: Coupling and conversion coefficients for optical modes. Proc. of the symposium on Quasi-Optics, Polytechnic Press of the Polytechnic Institute of Brooklyn, Brooklyn/N.Y. 1964, 333–347.

    Google Scholar 

  44. Kogelnik, H.: Matching of optical modes. Bell Syst. Techn. J. 43, 1 (1964) 334–337.

    Google Scholar 

  45. Herriot, D. R., u. H. J. Schulte: Folded optical delay lines. Appl. Opt. 4 (1965) 883–889.

    Google Scholar 

  46. Kogelnik, H.: Imaging of optical modes — resonators with internal lenses. Bell Syst. Techn. J. 44, 3 (1965) 455–494.

    Google Scholar 

  47. GrauG.: Laserspiegel zur Auskopplung eines speziellen beugungsbegrenzten Parallelstrahls. AEU 20, 12 (1966) 704–705.

    Google Scholar 

  48. Kogelnik, H.: On the propagation of gaussian beams of light through lenslike media including those with a loss or gain. Appl. Opt. 4 (1965) 1562–1569.

    Article  ADS  Google Scholar 

  49. Chu, T. S.: Geometrical representation of Gaussian beam propagation. Bell Syst. Techn. J. 45, 2 (1966) 287–299.

    Google Scholar 

  50. Deschamps, G. A., u. P. E. Mast: Beam tracing and applications. Proc. of the Symposium on Quasi-Optics, Polytechnic Press of the Polytechnic Institute of Brooklyn, Brooklyn/ N. Y. 1964, 379–395.

    Google Scholar 

  51. Kurauchi, N., u. W. K. Kahn Rays and ray envelopes within stable optical resonators containing focusing media. Appl. Opt. 5, 6 (1966) 1023–1029.

    ADS  Google Scholar 

  52. Collins, S. A., JR.: Analysis of optical resonators involving focusing elements. Appl. Opt. 3, 11 (1964) 1263–1274.

    Article  ADS  Google Scholar 

  53. Sonnefeld, A.: Die Hohlspiegel, Berlin: Verlag Technik 1957, 52.

    Google Scholar 

  54. Rigrod, W. W.: The optical ring resonator. Bell Syst. Techn. J. 44, 5 (1965) 907–916.

    MathSciNet  Google Scholar 

  55. Clark, P. 0.: Self-consistent field analysis of multireflector optical resonators. J. Appl. Phys. 36, 1 (1965) 66–72.

    Article  ADS  Google Scholar 

  56. Li, T.: Mode-selection in an aperture-limited concentric maser interferometer. Bell Syst. Techn. J. 42, 6 (1963) 2609–2620.

    Google Scholar 

  57. Giordmaine, J. A., u. W. Kaiser: Mode-selecting prism reflectors for optical masers. J. Appl. Phys. 35, 12 (1964) 3446–3451.

    Article  ADS  Google Scholar 

  58. Kleinmann, D. A., u. P. P. Kisluck: Discrimination against unwanted orders in the Fabry-Perot-resonator. Bell Syst. Techn. J. 41, 2 (1962) 453–462.

    Google Scholar 

  59. Fontana, J. R.: Modes in coupled optical resonators with active media. IEEE Transactions on Microwave Theory and Techniques MTT 12, 4 (1964) 400–405.

    Article  MathSciNet  ADS  Google Scholar 

  60. Kumagai, N., u. M. Matsuhara: Design considerations for mode-selective Fabry-Perotresonators. IEEE J. of Quantum Electronics QE-1, 2 (1965) 85–94.

    Article  ADS  Google Scholar 

  61. Born, M., u. E. Wolf: Principles of optics, London/New York/Paris/Los Angeles: Pergamon Press 1959, 328.

    MATH  Google Scholar 

  62. Kogelnik, H., u. C. K. N. Patel: Mode suppression and single frequency operation in a gaseous optical maser. Proc. IRE 50, 11 (1962) 2365–2366.

    Article  Google Scholar 

  63. Manger, H., u. H. Rothe: Selection of axial modes in optical masers. Phys. Letters 7, 5 (1963) 330–331.

    Article  ADS  Google Scholar 

  64. Manger, H., u. H. Rothe: Single and double axial mode operation of a Nd-optical maser. Phys. Letters 12, 3 (1964) 182–183.

    Article  ADS  Google Scholar 

  65. Gehrer, G., u. D. Röss: Modenselektive Eigenschaften einer planparallelen dielektrischen Platte als Reflektor eines Laserresonators. Z. Naturf. 20a, 5 (1965) 701–705.

    ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grau, G. (1969). Optische Resonatoren und Ausbreitungsgesetze für Laserstrahlen. In: Kleen, W., Müller, R. (eds) Laser. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87266-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87266-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87267-9

  • Online ISBN: 978-3-642-87266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics