Skip to main content

Anwendungen

  • Chapter
Laser
  • 90 Accesses

Zusammenfassung

Nützliche Anwendungen kann der Laser für alle Zwecke finden, in denen stark gebündelte Lichtstrahlen hoher Leistungsdichte benötigt werden. Die maximal erzielbaren Leistungsdichten liegen heute bei etwa 1014 W/cm2 für Impulslaser, bei etwa 108 W/cm2 für Dauerstrichlaser. Bei einer Anzahl von Anwendungen, jedoch keineswegs bei allen, wird auch die hohe räumliche und zeitliche Kohärenz der Laserstrahlung ausgenutzt sowie die Möglichkeit, den Laser mit Frequenzgemischen extrem großer Bandbreite zu modulieren. Dabei bleiben wegen der hohen Frequenz der Laserstrahlung die relativen Bandbreiten immer noch klein verglichen mit jenen, wie sie z. B. heute in der Nachrichtentechnik bei Mikrowellen üblich sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Kompfner, R.: Optical communications. Science 150, 3693 (Okt. 8, 1965 ) 149–155.

    Google Scholar 

  2. Mütze, K.: ABC der Optik, Hanau/Main. Dausien 1961, 829.

    Google Scholar 

  3. Consortini, A., L. Ronchi, A. M. ScheggiU. G. Toraldo Di Francia: Inflence of the atmospheric turbulence on the space coherence of a laser beam. Alta Frequenza 32, 11 (Nov. 1963) 790–178E.

    Google Scholar 

  4. Hodara, H.: Laser wave propagation through the atmosphere. Proc. IEEE 54, 3 (März 1966 ) 368–375.

    Google Scholar 

  5. Taylor, L. S.: Comments on „Laser wave propagation through the atmosphere“. Proc. IEEE 54, 10 (Okt. 1966 ) 1461–1462.

    Google Scholar 

  6. King, M., u. S. Kazner. Some parameters of a laser-type beyond-the-horizon communication link. Proc. IEEE 53, 2 (Febr. 1965 ) 137–141.

    Google Scholar 

  7. Höhn, D. H.: Effects of atmospheric turbulence on the transmission of a laser beam at 6328 A II. frequency spectra. Appl. Opt. 5, 9 (Sept. 1966) 1433–1436.

    ADS  Google Scholar 

  8. Höhn, D. H.: Effects of atmospheric turbulence on the transmission of a laser beam at 6328 A I. distribution of intensity. Appl. Opt. 5, 9 (Sept. 1966) 1427–1431.

    ADS  Google Scholar 

  9. Whitten, J. R., G. F. Prehmusu. K. Tomiyasu: Q-switched laser beam propagation over a ten-mile path. Proc. IEEE 53, 7 (Juli 1965 ) 736.

    Google Scholar 

  10. Watson, R. D., u. M. K. ClarkRayleigh scattering of 6943 Angstrom laser radiation in a nitrogen atmosphere. Phys. Rev. Letters 14, 26 (Juni 28, 1965 ) 1057–1058.

    Google Scholar 

  11. George, T. V., L. Goldstein, L. Slama u. M. Yokoyama: Molecular scattering of ruby-laser light. Phys. Review 137, 2A (Jan. 18, 1965) A 369—A 380.

    Google Scholar 

  12. Edwards, B. N., u. D. E. Burch: Absorption of 3.39-micron helium–neon laser emission by methane in the atmosphere. Opt. Soc. Am. 55, 2 (Febr. 1965 ) 174–177.

    Google Scholar 

  13. Theimer, O.: Scattering cross section of ideal gases for narrow laser beams. Phys. Rev. Letters 13, 21 (Nov. 23, 1964 ) 622.

    Google Scholar 

  14. George, T. V., L. Slama, M. Yokoyamau. L. Goldstein: Scattering of ruby laser beam by gases. Phys. Rev. Letters 11, 9 (Nov. 1, 1963 ) 403.

    Google Scholar 

  15. Chase, D. M.: Power loss in propagation through a turbulent medium for an optical-heterodyne system with angle tracking. J. Opt. Soc. Am. 56, 1 (Jan. 1966) 33–44.

    ADS  Google Scholar 

  16. Davis, J. I.: Consideration of atmospheric turbulence in laser systems design. Appl. Opt. 5, 1 (Jan. 1966) 139–147.

    ADS  Google Scholar 

  17. Consortini, A., L. Ronchi, A. M. Scheggiu. G. T. Di Francia: Influence of atmospheric scattering on the line-width of a laser beam. Alta Frequenza 33, 11 (Nov. 1964) 714–719.

    Google Scholar 

  18. Knop, C. M.: The dispersion properties of air as a possible limitation on the maximum usable bandwidth of coherent optical communication systems. Proc. IEEE 52, 3 (März1964) 319.

    Google Scholar 

  19. Megla, G. K.: Some new aspects for laser communications. Appl. Opt. 2, 3 (März 1963 ) 311–315

    Google Scholar 

  20. Brinkman, K. L., W. K. Prattu. E. J. Vourgourakis Design analysis for a deep-space laser communications system. Microwaves 3, 4 (April 1964) 35.

    Google Scholar 

  21. Marsten, R. B., D. Silvermanu. S. Gusns: Performance of communication systems between manned spacecraft on interplanetary voyages. J. Spacecraft and Rockets 3, 6 (Juni 1966 ) 828–833.

    Google Scholar 

  22. Gubin, S., R. B. Marsten u. D. Silverman: Lasers vs. microwaves in space communications. Spacecraft and Rockets 3, 6 (Juni 1966 ) 818–827.

    Google Scholar 

  23. Moss, E. B.: Aids to acquisition in optical communication. J. Spacecraft and Rockets 3, 6 (Juni 1966 ) 834–838.

    Google Scholar 

  24. Brookner, E., M. Kolkerurmwilmotte: Deep-space optical communications. IEEE Spectrum 4, 1 (Jan. 1967) 75–82.

    Google Scholar 

  25. Johnson, C. M.: Injection laser systems for communications and tracking. Electronics 36, 50 (Dez. 13, 1963 ) 34.

    ADS  Google Scholar 

  26. Gaaslaser transmits wideband data. Electronics 36, 42 (Okt. 18, 1963 ) 24.

    Google Scholar 

  27. Lockwood, R. C.: Laser communications systems leave the lab. Microwaves 3, 8 (August 1964) 6.

    Google Scholar 

  28. Marion-Davis, D.: AM laser transmitter using gallium arsenide diode set. Electronic News 8, 388 (Aug. 12, 1963 ) 12.

    Google Scholar 

  29. Rose, J. A.: 118-mile audio transmission by laser. Elec. Design News 8, 13 (Nov. 1963) 6.

    Google Scholar 

  30. Karlsons, D., C. W. Renou. W. J. Hannan: Room-temperature GaAs laser voice-communication system. Proc. IEEE 52, 11 (Nov. 1964) 1354.

    Google Scholar 

  31. Chatterson, E. J.: Semiconductor laser communications through multiple-scatter paths. Proc. IEEE 53, 12 (Dez. 1965 ) 2114–2115.

    Google Scholar 

  32. Saito, S., u. T. Kimura: Demodulation of phase-modulated laser beam by autocorrelation. Electronics and Communications in Japan 48, 3 (März 1965 ) 45–51.

    Google Scholar 

  33. Waite, T., u. R. A. Gudmundsen: A balanced mixer for optical heterodyning: The ANN detector. Proc. IEEE 54, 2 (Febr. 1966 ) 297–299.

    Google Scholar 

  34. Waite, T.: A balanced mixer for heterodyning: The magic T optical mixer. Proc. IEEE 54, 2 (Febr. 1966 ) 334–335.

    Google Scholar 

  35. Read, W. S., u. R. G. Turner: Tracking heterodyne detection. Appl. Opt. 4, 12 (Dez. 1965 ) 1570–1573.

    Google Scholar 

  36. Goubau, G., u. F. Schwering. On the guided propagation of electromagnetic wave beams. IRE Trans. on Antennas and Propagation, AP-9 (1961) 248–256.

    Google Scholar 

  37. Marcatili, E. A. J., u. R. A. Schmeltzer: Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Techn. J. 43, 4 (1964) 1783 bis 1809.

    Google Scholar 

  38. Marcatili, E. A. J.: Light transmission in a multiple dielectric (gaseous and solid)guide. Bell Syst. Techn. J. 45 (1966) 97–104.

    Google Scholar 

  39. Eaglesfield, C C. Optical pipeline: a tentative assessment. Proc. IEE, 109 B, 243 (1962) 26–32.

    Google Scholar 

  40. Karbowlak, A. E.: New type of waveguide for light and infrared waves. Electron. Letters 1, 2 (1965) 47–48.

    Google Scholar 

  41. Goubau, G., u. J. R. Christian: Some aspects for long distance transmission at optical frequencies. IEEE Transactions MTT 12 (1964) 212–220.

    Google Scholar 

  42. Goubau, G.: Lenses guide optical frequencies to low-loss transmission. Electronics 39 (16. Mai 1966 ) 83–89.

    Google Scholar 

  43. Miller, S E, u. L. C. Tillotson: Optical transmission research. Proc. IEEE 54, 10 (1966) 1300–1311.

    Google Scholar 

  44. Miller, S. E.: Directional control in light-wave guidance. Bell Syst. Techn. J. 43, 4 (1964) 1727–1739.

    Google Scholar 

  45. Berreman, D. W.: A gas lens using unlike counter-flowing gases. Bell Syst. Techn. J. 43, 4 (1964) 1476–1479.

    Google Scholar 

  46. Berreman, D. W.: A lens or light guide using convectively distorted thermal gradients in gases. Bell Syst. Techn. J. 43, 4 (1964) 1469–1475.

    Google Scholar 

  47. Marcuse, D., u. S. E. Miller. Analysis of a tubular gas lens. Bell Syst. Techn. J. 43,4 (1964) 1759–1782.

    Google Scholar 

  48. Beck, A. C.: Thermal gas lens measurements. Bell Syst. Techn. J. 43, 4 (1964) 1818 bis 1820.

    Google Scholar 

  49. Beck, A. C.: Gas mixture lens measurements, Bell Syst. Techn. J. 43, 4 (1964) 1821 bis 1825.

    Google Scholar 

  50. Tien, P. K., J. P. Gordonu. J. R. Whinnery: Focusing of a light beam of gaussian field distribution in continuous and periodic lense-like media. Proc. IEEE 53, 2 (1965) 129–136.

    Google Scholar 

  51. Berreman, D. W.: Convective gas light guides or lens trains for optical beam transmission. J. Opt. Soc. Am. 55, 3 (1965) 239–247.

    ADS  Google Scholar 

  52. Marcuse, D.: Theory of a thermal gradient gas lens. IEEE Transactions MTT 13 (1965) 734–739.

    Google Scholar 

  53. Miller, S. E.: Light propagation in generalized lens-like media. Bell Syst. Techn. J. 44 (1965) 2017–2063.

    Google Scholar 

  54. Marcuse, D.: Properties of periodic gas lenses. Bell Syst. Techn. J. 44 (1965) 2083 bis 2116.

    Google Scholar 

  55. Marcuse, D.: Comparison between a gas lens and its equivalent thin lens. Bell Syst. Techn. J. 45, 8 (1966) 1339–1344.

    Google Scholar 

  56. Marcuse, D.: Deformation of fields propagating through gas lenses. Bell Syst. Techn. J. 45, 8 (1966) 1345–1368.

    Google Scholar 

  57. Gordon, J. P.: Optics of general guiding media. Bell Syst. Techn. J. 45 (1966) 321 bis 331.

    Google Scholar 

  58. Hirano, J., Y. Kukatsu: Stability of a light beam in a beam waveguide. Proc. IEEE 52, 11 (1964) 1284–1292.

    Google Scholar 

  59. Marcuse, D.: Propagation of light rays through a lens waveguide with curved axis. Bell Syst. Techn. J. 43, 2 (1964) 741–753.

    MATH  Google Scholar 

  60. Berreman, D. W.: Growth of ray oscillations about irregularly wavy axis of a lens light guide. Bell Syst. Techn. J. 44 (1965) 2117–2132.

    Google Scholar 

  61. Steier, W. H.: The statistical effects of random variations in the components of a beam waveguide. Bell Syst. Techn. J. 45, 3 (1966) 451–471.

    Google Scholar 

  62. Marcuse, D.: Physical limitations on ray oscillation suppressors. Bell Syst. Teehn. J. 45,5 (1966) 743–751.

    Google Scholar 

  63. Marcatili, E. A. J.: Ray propagation in beam waveguides with redirectors. Bell Syst. Techn. J. 45 (1966) 105–114.

    Google Scholar 

  64. Gabor, D.: A new microscopic principle. Nature 161 (1948) 777–778.

    ADS  Google Scholar 

  65. Gabor, D.: Microscopy by reconstructed wave fronts. Proc. Roy. Soc. London 197 A (1949) 454–487.

    Google Scholar 

  66. Kohlrausch, F.: Praktische Physik, Bd. 1, Stuttgart: Teubner, 20. Aufl., 1955, 503 u. 507.

    Google Scholar 

  67. Stroke, G. W.: An introduction to coherent optics and holography, New York/London: Academic Press 1966.

    Google Scholar 

  68. Cutrona, L. J.: Optical computing techniques, IEEE Spectrum (Oktober 1964) 101 bis 108.

    Google Scholar 

  69. Leith, E. N., u. J. Upatnieks: Photography by laser. Scientific American 212, 6 (1965) 24–35.

    Google Scholar 

  70. Pennington, K. S.: How to make laser holograms. Microwaves 4 (Okt. 1965 ) 35–40.

    Google Scholar 

  71. Blunt, J.: Holography: the picture looks good. Electronics (April 1966) 139–143.

    Google Scholar 

  72. Collier, R. J.: Some current views on holography. IEEE Spectrum (Juli 1966) 67 bis 74.

    Google Scholar 

  73. Spiller, E.: Optische Nachrichtenilbertragung durch Holographie. Umschau Heft 9 (1966) 288–292; Heft 10 (1966) 315–321.

    Google Scholar 

  74. Pennington, K. S., u. L. H. Lin: Multicolour wave front reconstruction. Appl. Phys. Letters 7 (1965) 56–57.

    Google Scholar 

  75. Lin, L. H., K. S. Pennington, G. W. StrokeU. A. E. Labeyrie: Multicolour holographic image reconstruction with white-light illumination. BSTJ 45 (1966) 659–660.

    Google Scholar 

  76. Urbach, J. C., u. R. W. Meier.Thermoplastic xerographic holography. Appl. Opt. 5 (1966) 666–667.

    ADS  Google Scholar 

  77. Upatnieks, J., J. MarksU. R. Fewqrowicz: Color holograms for white light reconstruction. Appl. Phys. Letters 8 (1966) 286–287.

    ADS  Google Scholar 

  78. Kock, W. E.: Hologram television. Proc. IEEE 54 (1966) 331.

    Google Scholar 

  79. Enloe, L. H., J. A. MurphyU. C. B. Rubinstein: Hologram transmission via television. BSTJ 45 (1966) 335–339.

    Google Scholar 

  80. Heflinger, L. O., R. F. WuerkerU. R. E. Brooks: Holographic interferometry. J. Appl. Phys. 37 (1966) 642–649.

    ADS  Google Scholar 

  81. Upatniexes, J., A. Van Der LugtU. E. N. Leith: Correction of lens aberrations by means of holograms. Appl. Opt. 5 (1966) 589–593.

    ADS  Google Scholar 

  82. Haines, K. A., u. B. P. Hildebrand: Surface-deformation measurement using the wavefront reconstruction technique. Appl. Opt. 5 (1966) 595–602.

    Google Scholar 

  83. Gabor, D., u. W. P. Goss: Interference microscope with total wave front reconstruction. J. Opt. Soc. Am. 56 (1966) 849–858.

    Google Scholar 

  84. Leith, E. N., A.Kòzma, J. Upatnieks, J. Marksu. N. Massei: Holographic data storage in three-dimensional media. Appl. Opt. 5 (1966) 1303–1311.

    ADS  Google Scholar 

  85. Chambers, R. P., u. J. S. CourtneyPratt: Bibliography on holograms. J. of the Society of Motion Picture and Television Engineers 75 (April 1966) 373–435.

    Google Scholar 

  86. Collier, R. J.: An up-to-date look at holography. Bell Laboratories Record 45, 4 (1967) 103–109.

    Google Scholar 

  87. Preston, K.: Computing at the speed of light. Electronics 38, 18 (Sept. 6, 1965 ) 72–83.

    Google Scholar 

  88. Joos, G.: Lehrbuch der Theoretischen Physik, Frankfurt: Akademische Verlagsges. 1959, 358.

    Google Scholar 

  89. Rhodes, E. J.: Analysis and synthesis of optical images. Am. J. of Phys. 21 (1953) 337–343.

    ADS  MATH  Google Scholar 

  90. Van Der Lugt: Signal detection by complex signal spatial filtering. IEEE Transactions on Information Theory 10 (1964) 139–145.

    Google Scholar 

  91. Stroke, G. W.: An introduction to coherent optics and holographie, New York: Academic Press 1966.

    Google Scholar 

  92. Jackson, P. L.: Diffractive processing of geophysical data. Apps. Opt. 4 (1965) 419.

    ADS  Google Scholar 

  93. Oneill, E.: Spatial filtering in optics. IRE Transactions on Information Theory 2 (1956) 56–65.

    Google Scholar 

  94. Cutrona, L. J.: Optica computing techniques. IEEE Spectrum (Okt. 1964 ) 101–108.

    Google Scholar 

  95. Brown, W. M.: Analysis of linear time-invariant systems, New York: McGraw-Hill 1963.

    MATH  Google Scholar 

  96. Cutrona, L. J., et al.: Optical processing and filtering systems. IRE Transactions on Information Theory 6 (1960) 386–400.

    MathSciNet  Google Scholar 

  97. Kozma, A., u. D. L. Kelly. atial filtering for detection of signals submerged in noise. Apps. Opt. 4 (1965) 387.

    ADS  Google Scholar 

  98. Armitage, J. D., u. A. W. Lormann.Character recognition by incoherent spatial filtering. Appl. Opt. 4 (1965) 461.

    ADS  Google Scholar 

  99. Fowlee, A. B.: Quenching of gallium arsenide injection lasers, Appl. Phys. Letters 3, 1 (Juli 1, 1963 ).

    Google Scholar 

  100. Reimann, O. A., u. W. F. Kosoxocky: Progress in optical computer research. IEEE Spectrum 2, 3 (März 1965 ).

    Google Scholar 

  101. Kosoxocky, W. F.: Feasability of neuristor laser computers. Proc. of Optical Processing of Information Symposium Oct. 1962 Washington/D. C., Baltimore/Md: Spartan Books 1963.

    Google Scholar 

  102. Smith, W. V.: Computer applications of lasers, Proc. IEEE 54, 10 (Okt. 1966) 1295 bis 1300.

    Google Scholar 

  103. Leith, E. N., et al: Coherent optical systems of data processing. Proc. of Symposium on Optical and Electro-Optical Information Processing Technologie, MIT Press.

    Google Scholar 

  104. Kosoxocky, W. F.: Laser digital devices. Proc. of Symposium on Optical Information Processing Technologie Nov. 1964, Boston/Mass., MIT Press (1965).

    Google Scholar 

  105. Kosonicky, W. F., R. H. Cornelyu. F. J. Marlow: GaAs laser inverter. Digest International Solid-State Circuits Conf. Febr. 1965 Philadelphia/Penn.

    Google Scholar 

  106. Mütze, K.: ABC der Optik, Hanau/Main: Dausien 1961, 634.

    Google Scholar 

  107. Gabor, D.: A new microscopic principle. Nature 161 (1948) 777–778.

    ADS  Google Scholar 

  108. Gabor, D.: Microscopy by reconstructed wave fronts. Proc. Roy. Soc. London 197 A (1949) 454–487.

    Google Scholar 

  109. Kohlrausch, F.: Praktische Physik, Bd. 1, Stuttgart: Teubner, 20. Aufl., 1955, 503 u. 507.

    Google Scholar 

  110. Stroke, G. W.: An introduction to coherent optics and holography, New York/London: Academic Press 1966.

    Google Scholar 

  111. Cutrona, L. J.: Optical computing techniques, IEEE Spectrum (Oktober 1964) 101 bis 108.

    Google Scholar 

  112. Leith, E. N., u. J. Upatnieks: Photography by laser. Scientific American 212, 6 (1965) 24–35.

    Google Scholar 

  113. Pennington, K. S.: How to make laser holograms. Microwaves 4 (Okt. 1965 ) 35–40.

    Google Scholar 

  114. BLUNT, J.: Holography: the picture looks good. Electronics (April 1966) 139–143.

    Google Scholar 

  115. Collier, R. J.: Some current views on holography. IEEE Spectrum (Juli 1966) 67 bis 74.

    Google Scholar 

  116. Spiller, E.: Optische Nachrichtenilbertragung durch Holographie. Umschau Heft 9 (1966) 288–292; Heft 10 (1966) 315–321.

    Google Scholar 

  117. Pennington, K. S., u. L. H. Lin: Multicolour wave front reconstruction. Appl. Phys. Letters 7 (1965) 56–57.

    ADS  Google Scholar 

  118. Lin, L. H., K. S. Pennington, G. W. StrokeU. A. E. Labeyrie: Multicolour holographic image reconstruction with white-light illumination. BSTJ 45 (1966) 659–660.

    Google Scholar 

  119. Urbach, J. C., u. R. W. Meier. hermoplastic xerographic holography. Appl. Opt. 5 (1966) 666–667.

    ADS  Google Scholar 

  120. Upatnieks, J., J. MarksU. R. Feoorowicz: Color holograms for white light reconstruction. Appl. Phys. Letters 8 (1966) 286–287.

    ADS  Google Scholar 

  121. Kock, W. E.: Hologram television. Proc. IEEE 54 (1966) 331.

    Google Scholar 

  122. Enloe, L. H., J. A. MurphyU. C. B. Rubinstein1: Hologram transmission via television. BSTJ 45 (1966) 335–339.

    Google Scholar 

  123. Heflinger, L. O., R. F. WuerkerU. R. E. Brooks: Holographic interferometry. J. Appl. Phys. 37 (1966) 642–649.

    ADS  Google Scholar 

  124. Upatniexs, J., A. Van Der Lugt U. E. N. Leith: Correction of lens aberrations by means of holograms. Appl. Opt. 5 (1966) 589–593.

    ADS  Google Scholar 

  125. Haines, K. A., u. B. P. Hildebrand: Surface-deformation measurement using the wavefront reconstruction technique. Appl. Opt. 5 (1966) 595–602.

    ADS  Google Scholar 

  126. Gabor, D., u. W. P. Goss: Interference microscope with total wave front reconstruction. J. Opt. Soc. Am. 56 (1966) 849–858.

    ADS  Google Scholar 

  127. Leith, E. N., A. Kòzma, J. Upatnieks, J. Marksu. N. Massei: Holographic data storage in three-dimensional media. Appl. Opt. 5 (1966) 1303–1311.

    ADS  Google Scholar 

  128. Chambers, R. P., u. J. S. Courtney-Pratt: Bibliography on holograms. J. of the Society of Motion Picture and Television Engineers 75 (April 1966) 373–435.

    Google Scholar 

  129. Collier, R. J.: An up-to-date look at holography. Bell Laboratories Record 45, 4 (1967) 103–109.

    Google Scholar 

  130. Takuma, H., u. O. Butsuru: J. Appl. Phys. Japan 31 (1962) 414.

    Google Scholar 

  131. Yajima, T., F. Sxiuizuu. K. Shimoda: High speed photography using a ruby optical maser. Appl. Opt. 6, 1 (1962) 770–771.

    ADS  Google Scholar 

  132. Coleman, K. R.: Ultrahigh-speed photography. Internat. Sci. Technol. 40, 25 (Jan. 1964).

    Google Scholar 

  133. Trammel, W. V.: Laser photography of hypervelocity projectiles. Rev. Sci. Instr. 36, 11 (1965) 1551–1553.

    ADS  Google Scholar 

  134. Maker, P. D., R. W. Terhune, M. NisenoffU. C. M. Savage: Effects of dispersion and focusing on the production of optical harmonics, Phys. Rev. Letters 8 (1962) 21–22.

    ADS  Google Scholar 

  135. Giordmaine, J. A.: The interaction of light with light, Scientific American 210 (April 1964) 38–49.

    Google Scholar 

  136. Terhune, R. W.: Nonlinear optics, Internat. Sci. Technol. (August 1964) 38–47.

    Google Scholar 

  137. Kaminov, I. P.: Parametric principles in optics. IEEE Spectrum 2, 4 (1965) 35–43.

    Google Scholar 

  138. Franken, P. A., u. J. F. Ward: Optical harmonics and nonlinear phenomena. Rev. Mod. Phys. 35, 1 (1963) 23–39.

    MATH  Google Scholar 

  139. Bloembergen, N.: Nonlinear optics, New York/Amsterdam: Benjamin 1965.

    Google Scholar 

  140. Minck, R. W., R. W. Terhuneu. C. C. Wang: Nonlinear optics. Proc. IEEE 54, 10 (1966) 1357–1374.

    Google Scholar 

  141. Landau, L. D., u. E. M. Lifshitz: Electrodynamics of continuous media, Oxford/ London/New York/Paris: Pergamon Press 1960.

    Google Scholar 

  142. Cady, W. G.: Piezoelectricity, New York: Mc Graw-Hill 1946.

    Google Scholar 

  143. Briss, R. R.: Property tensors in magnetic crystal classes. Proc. Phys. Soc. (London) 79 (1962) 946–953.

    ADS  Google Scholar 

  144. Armstrong, J. A., N. Bloembergen, J. DucuingU. P. S. Pershan: Interactions Light waves in a nonlinear dielectric. Phys. Rev. 127, 6 (1962) 1918–1939.

    Google Scholar 

  145. Pershan, P. S.: Nonlinear optical properties of solids: energy considerations. Phys. Rev. 130, 3 (1963) 919–929.

    MathSciNet  ADS  MATH  Google Scholar 

  146. Manley, J. M., u. H. E. Rowe: Some general properties of nonlinear elements — I. General energy relations. Proc. IRE 44 (1956) 904–913.

    Google Scholar 

  147. Giordmaine, J. A., u. R. C. Miller.Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Letters. 14, 24 (1965) 973–976.

    ADS  Google Scholar 

  148. Yariv, A.: Parametric interactions of optical modes. IEEE J. of Quantum Electronics 2, 2 (1966) 30–37.

    ADS  Google Scholar 

  149. Giordmaine, J. A., u. R. C. Miller: Optical parametric oscillation in the visible spectrum. Appl. Phys. Letters. 9, 8 (1966) 298–300.

    Google Scholar 

  150. Van Tram, N., J. Spalter, J. Hanus, J. Ernestu. D. Kehl: Generation of the difference frequency by non-collinear light beams in KDP crystal. Phys. Letters. 19, 4 (1965) 285–287.

    ADS  Google Scholar 

  151. Zernire, F., u. P. R. Berman: Generation of far infrared as a difference frequency. Phys. Rev. Letters. 15, 26 (1965) 999–1001.

    Google Scholar 

  152. Bloembergen, N., u. P. S. Pershan: Light waves at the boundary of nonlinear media. Phys. Rev. 128 (1962) 606–622.

    MathSciNet  MATH  Google Scholar 

  153. Ducuing, J., u. N. Bloembergen: Observation of reflected light harmonics at the boundary of piezoelectric crystals. Phys. Rev. Letters 10 (1963) 474–476.

    Google Scholar 

  154. Chang, R. K., u. N. Bloembergen: Experimental verification of the laws for the reflected intensity of second harmonic light. Phys. Rev. 144 (1966) 775–780.

    Google Scholar 

  155. Chiao, R. Y., E. GarmireU. C. H. Townes: Self-trapping of optical beams. Phys. Rev. Letters 13, 15 (1964) 478.

    ADS  Google Scholar 

  156. Kelley, P. L.: Self-focusing of optical beams. Phys. Rev. Letters 15, 26 (1965) 10051008.

    Google Scholar 

  157. Shen, Y. R.: Electrostriction, optical Kerr-effekt and selffocusing of laser beams. Phys. Letters 20, 4 (1966) 378–380.

    ADS  Google Scholar 

  158. Grob, K., u. M. Wagner: Equations of Ginzburg-Landau type in nonlinear optics. Phys. Rev. Letters 17, 15 (1966) 819–821.

    Google Scholar 

  159. Maker, P. D., u. R. W. Terhune: Study of optical effects due to an induzed polarization third order in the electric field strength. Phys. Rev. 137 A (1965) 801–818.

    Google Scholar 

  160. Shen, Y. R., u. N. Bloembergen: Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137 A, 6 (1965) 1787–1805.

    Google Scholar 

  161. Eckhardt, G.: Selection of Raman laser materials. IEEE J. of Quantum Electronics QE-2, 1 (1966) 1–8.

    ADS  Google Scholar 

  162. Garmire, E., u. C. H. Townes: Stimulated Brillouin scattering in liquids. Appl. Phys. Letters 5, 4 (1964) 84.

    Google Scholar 

  163. Chiao, R. Y., C. H. Townesu. B. P. StoicheffStimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Letters 12 (1964) 592595.

    Google Scholar 

  164. Brewer, R. G.: Growth of optical plane waves in stimulated Brillouin scattering. Phys. Rev. 140 A (1965) 800–805.

    Google Scholar 

  165. Loudon, R.: Theory of stimulated Raman scattering from lattice vibrations. Proc. Phys. Soc. (London) 82 (1963) 393–400.

    ADS  Google Scholar 

  166. Physicsof Quantum Electronics, Conference Proceedings, ed. by P. L. KELLEY, B LAX u. P. E. TANNENWALD, New York: Mc Graw-Hill 1966, 3–264.

    Google Scholar 

  167. Ascoli-Bartoli, U., S. Martellucciu. E Mazzucato: Some contributions of ruby laser light source to the study of plasma refractivity. Il Nuovo Cimento 32, 2 (1964) 298.

    Google Scholar 

  168. Ashby, D. E. T. F., 1). F. Jephcott, A. MaleinU. F. A. Raynor: Performance of the He–Ne gas laser as an interferometer for measuring plasma density. J. Appl. Phys. 36, 1 (1965) 29–34.

    Google Scholar 

  169. Ashby, D. E. T. F., u. D. F. Jephcott: Measurement of plasma density using a gas laser as an infrared interferometer. Appl. Phys. Letters 3, 1 (1963) 15–16.

    Google Scholar 

  170. Baker, D. A., J. E. Hammelu F. C. Jahoda: Extension of plasma interferometry technique with a He–Ne laser. Rev. Sci. Instr. 36, 3 (1965) 395–396.

    ADS  Google Scholar 

  171. Boornard, A., L. J. NicastroU. J. Vollmer: Determination of plasma density by laser interferometric and continuum radiation intensity measurements. Appl. Phys. Letters 7, 10 (1965) 258–260.

    ADS  Google Scholar 

  172. Brown, L. S., u. T. W. B. Kibble: Interaction of intense laser beams with electrons. Phys. Rev. 133, 3A (1964) A 705.

    Google Scholar 

  173. Brown, T. S., u. D. J. Rose: Plasma diagnostics using lasers: Relations between scattered spectrum and electron-velocity distribution. J. Appl. Phys. 37, 7 (1966) 2709–2714.

    Google Scholar 

  174. Chen, C. J.: Velocity-profile measurement in plasma flows using tracers produced by a laser beam. J. Appl. Phys. 37, 8 (1966) 3092–3095.

    Google Scholar 

  175. Davies, W. E. R., u. S. A. Ramsden: Scattering of light from the electrons in a plasma. Phys. Letters 8, 3 (1964) 179–180.

    Google Scholar 

  176. Desilva, A. W., D. E. Evansu. M. J. Forrest: Observation of Thomson and cooperative scattering of ruby laser light by a plasma. Nature 203, 4952 (1964) 1321.

    ADS  Google Scholar 

  177. Deuel, R. W., L. P. Kirchneru. E. Thornton: The laser interferometer as a diagnostic tool in shock-tube experiments. Appl. Phys. Letters 8, 3 (1966) 59–60.

    ADS  Google Scholar 

  178. Dougal, A. A., J. P. Craigu. R. F. Gribble: Time-space resolved experimental diagnostics of theta-pinch plasma. Phys. Rev. Letters 13, 5 (1964) 156–158.

    ADS  Google Scholar 

  179. Dougal, A. A., J. P. Craigu. R. F. Gribble: Experimental optical maser diagnostic of dense plasmas. Bull. Am. Phys. Soc. 9, 2 (1964) 151.

    Google Scholar 

  180. Fünfer, E., B. KronastU. G. H. Kunze: Experimental results on light scattering by a 0-pinch plasma using a ruby laser. Phys. Letters 5, 2 (1963) 125.

    ADS  Google Scholar 

  181. Gatland, I. R., L. GoldU. J. W. Moffat: Laser beam detection of electron-photon interaction. Phys. Letters 12, 2 (1964) 105.

    ADS  Google Scholar 

  182. George, T. V., L. Slama, M. Yokoyamau. L. Goldstein: Scattering of ruby-laser beam by gases. Phys. Rev. Letters 11, 9 (1963) 403–406.

    ADS  Google Scholar 

  183. George, T. V., L. Slama, M. VokoyamaU. L. Goldstein: Molecular scattering of ruby-laser light. Phys. Rev. 137, 2A (1965) 369–380.

    Google Scholar 

  184. Gerardo, J. B., u. J. T. Verdeyen: The laser interferometer: Application to plasma diagnostics. Proceedings of the IEEE 52, 6 (1964) 690.

    Google Scholar 

  185. Gerardo, J. B., J. T. VerdeyenU. M. A. GnsiNow: High-frequency laser interferometry in plasma diagnostics. J. Appl. Phys. 36, 7 (1965) 2146–2151.

    ADS  Google Scholar 

  186. Gerry, E. T., u. D. J. Rose: Plasma diagnostics by Thomson scattering of a laser beam. J. Appl. Phys. 37, 7 (1966) 2715–2724.

    Google Scholar 

  187. Gormezano, C.: Mesure de la densité d’un plasma par un laser S gaz. C. R. Acad. Sci. 259, 17 (1964) 2805–2808.

    Google Scholar 

  188. Grirble, R. F., J. P. Craigu. A. A.Dougal: Spatial density measurements in fast theta-pinch plasma by laser excitation of coupled infrared resonators. Appl. Phys. Letters 5, 3 (1964) 60— 62.

    Google Scholar 

  189. Hayler, D. A., u. C. L. Rudder: Transmission of coherent light through shock produced plasmas. Proc. IEEE 51, 2 (1963) 365.

    Google Scholar 

  190. Hooper, E. B. Jr., u. G. Bekefi: A laser interferometer for repetitively pulsed plasmas. Appl. Phys. Letters 7, 5 (1965) 133–135.

    Google Scholar 

  191. Hughes, T. P.: New method for the determination of plasma electron temperature and density from Thomson scattering of an optical maser beam. Nature 194, 4825 (1962) 268–269.

    ADS  Google Scholar 

  192. Kingsland, D. 0.: A ruby laser diagnostic plasma probe. Proc. IEEE 53, 2 (1965) 196.

    Google Scholar 

  193. Kricker, W. A., u. W. I. B. Smith: A moving mirror laser interferometer for plasma diagnostics. Phys. Letters 14, 2 (1965) 102–103.

    Google Scholar 

  194. Kroll, N. M., A. Ronu. N. Rostoker: Optical mixing as a plasma density probe. Phys. Rev. Letters 13, 3 (1964) 83.

    ADS  Google Scholar 

  195. Kronast, B.: Laser application in the field of plasma physics. Z. angew. Math. Phys. (Schweiz) 16, 1 (1965) 120–121.

    Google Scholar 

  196. Kronast, B., H.Röhr, E. Clock, H. Zwicker u. E.Fünfer: Measurements of the ion and electron temperature in a theta-pinch plasma by forward scattering. Phys. Rev. Letters 16, 24 (1966) 1082–1085.

    ADS  Google Scholar 

  197. Kunze, H. J., A. AberhagenU. E. Fünfer: Electron density and temperature measurements in a 26 kJ theta-pinch by light scattering. Phys. Letters 13, 1 (1964) 38.

    ADS  Google Scholar 

  198. Kunze, H. J., E. Fünfer, B. Kronastu. W. H. Kegel: Measurement of the spectral distribution of light scattered by a theta-pinch plasma. Phys. Letters 11, 1 (1964) 42–43.

    ADS  Google Scholar 

  199. Ramsden, S. A., u. W. E. R. Davies: Radiation scattered from the plasma produced by a focused ruby laser beam. Phys. Rev. Letters 13, 7 (1964) 227.

    ADS  Google Scholar 

  200. Ramsden, S. A., u. W. E. R. Davies: Observation of cooperative effects in the scattering of a laser beam by a plasma. Phys. Rev. Letters 16, 8 (1966) 303–306.

    Google Scholar 

  201. Schwarz, S. E.: Plasma diagnosis by means of optical scattering. J. Appl. Phys. 36, 6 (1965) 1836–1841.

    ADS  Google Scholar 

  202. Schwarz, S. E.: Scattering of optical pulses from a non-equilibrium plasma. Proc. IEEE 51, 10 (1963) 1362.

    Google Scholar 

  203. Toraldo Di Francia, G.: Interaction of focused laser with a beam of charged particles. Il Nuovo Cimento 37,4 (1965) 1553–1560.

    Google Scholar 

  204. Warmock, A. C. C., W. N. Deuctars, J. Irvingu. D. E. Kidd: Gas laser measurements of the electron density of a plasma produced by a very fast theta-pinch preheater. Appl. Phys. Letters 7, 2 (1965) 29–30.

    ADS  Google Scholar 

  205. Watteau, J.-P.: Diffusion of light by electrons of a plasma minder laboratory conditions. L’Onde Electrique 46, 466 (1966) 62–74.

    Google Scholar 

  206. Browne, P. F.: Mechanism for gas breakdown by lasers. Proc. Phys. Soc. 86, 554 (1965) 1323–1332.

    ADS  Google Scholar 

  207. Buscier, H. T., R. G. TomlinsonU. E. K. Damon: Frequency dependence of optically induced gas breakdown. Phys. Rev. Letters 15, 22 (1965) 847–849.

    ADS  Google Scholar 

  208. Mandel’shtam, S. L., P. P. Pashinin, A. V. Prokhindeev, A. M. ProkhorovU. N. K. Sukhodrev: Study of the „spark“ produced in air by focused laser radiation. Soy. Phys. JETP 20, 5 (1965) 1344–1346.

    Google Scholar 

  209. Nelson, P., P. Veyrie, M. Berryu. Y. Durand: Experimental and theoretical studies of air breakdown by intense pulse of light. Phys. Letters 13, 3 (1964) 226.

    ADS  Google Scholar 

  210. Wright, J. K.: Theory of the electrical breakdown of gases by intense pulses of light. Proc. Phys. Soc. 84, 537 (1964) 41.

    ADS  Google Scholar 

  211. Adams, C. M., JR., H. G. A. Hardway: Fundamentals of laser beam machining and drilling. IEEE Transactions IGA 1, 2 (1965).

    Google Scholar 

  212. Bahun, C. J., u. R. D. Engquist: Metallurgical applications of lasers. Proc. Nat. Electr. Conf. 18, 2 (1962) 607–619.

    Google Scholar 

  213. Bruma, M. S.: Usinage photonique avec générateur laser. Proc. 3rd. Int. Symp. on Quantum Electronics, ed. by P. Grivet and N. Bloembergen. New York: Columbia University Press 1964, 1333–1367.

    Google Scholar 

  214. Donovan, R. F.: Laser techniques for metal joining. Paper Creat. Sem. Am. Soc. Tool and Manuf. Engrs. 1963–1964.

    Google Scholar 

  215. Epperson, P. J., R. W. DyerU. J. C. Grzywa: The laser now a production tool. Western Electric Eng. 10, 2 (1966) 9–17.

    Google Scholar 

  216. Fairbanks, R. H., u. C. M. Adams: Laser beam fusion welding. Welding J. 43 (1964) 97–102.

    Google Scholar 

  217. Fairbanks, R., u. R. L. Martin: Some aspects of laser beam welding. Proc. Nat. Electr. Conf. 18, 2 (1962) 786.

    Google Scholar 

  218. Forbes, N.: Laser beam machining. Microelectronics and Reliability 4, 1 (1965) 105108.

    Google Scholar 

  219. Patzke, H. G.: Laser für die Werkstoffbearbeitung. VDI-Z. 64, 18 (1964) 787–791.

    Google Scholar 

  220. Gardner, A. R.: Lasers in engineering. Product Engineering 36, 21 (1965) 118–124.

    Google Scholar 

  221. Lemmond, C. Q., u. L. H. Stauffer: Energy beams as working tools. IEEE Spectrum 1, 7 (1964) 67–80.

    Google Scholar 

  222. Locquin, M.: Micro-usinage photonique par laser. Electronique Industr. Nucléaire 68 (1963) 366–368, 378.

    Google Scholar 

  223. Miller, K. J., u. J. D. Ninnikhoven: Laser welding. Machine Design 37, 18 (1965) 120–125.

    Google Scholar 

  224. Namba, S., u. P. H. Kim: Electron and laser beam processing. Jap. J. Appl. Phys. 3, 9 (1964) 536–545.

    Google Scholar 

  225. Norton, J. F., u. J. G. Mcmullen: Laser-formed apertures for electron beam instruments. J. Appl. Phys. 34, 12 (1963) 3640–3641.

    Google Scholar 

  226. Osial, T. A.: The laser as a machining and welding tool. Design News 20, 22 (1965) 162 bis 173.

    Google Scholar 

  227. Panzer, S.: Die Anwendungen des Lasers für die Materialbearbeitung. Z. f. angew. Math. u. Phys. (Schweiz) 16, 1 (1965) 138–155.

    Google Scholar 

  228. Platte, W. N., u. J. F. Smith: Laser techniques for metals joining. Welding Research J. Suppl. (1963) 481S-489 S.

    Google Scholar 

  229. Peppers, N. A.: A laser microscope. Appl. Opt. 4, 5 (1965) 555–558.

    ADS  Google Scholar 

  230. Price, T. E.: Laser welding of semiconductors. Instr. Electronics 2, 10 (1964) 478–479.

    Google Scholar 

  231. Rata, E. C.: The many-sided laser. Mechanical Engineering 87, 4 (1965) 48–54.

    Google Scholar 

  232. Ready, J. F.: Effects due to absorption of laser radiation. J. Opt. Soc. Am. 53, 4 (1963) 514.

    Google Scholar 

  233. Schwarz, H., u. A. J. Demaria. Elektronen-, Ionen-und Laser-Strahlen zur Materialbearbeitung. Physikal. Bl. 19, 7 (1963) 307–314.

    Google Scholar 

  234. Smith, H. M., u. A. F. Turner: Vacuum deposited thin films using a ruby laser. Appl. Opt. 4, 1 (1965) 147–148.

    Google Scholar 

  235. Wandinger, L., u. K. Klohn: Laser-alloyed tunnel diodes for microwave applications. Proc. IEEE 51, 6 (1963) 938–939.

    Google Scholar 

  236. Young, D. S.: The laser as an industrial tool. Western Electric Eng. 8, 4 (1964) 2–10.

    Google Scholar 

  237. Panzer, S.: Probleme der Laser-Materialbehandlung beim Einsatz in industriellen Prozessen. Elektr. Ausrüstung 4 (1964) 124–134.

    Google Scholar 

  238. Panzer, S.: Thermische Wirkungen der Laserstrahlung auf Werkstoffe. Zeiss-Informationen 56 (1956) 60–67.

    Google Scholar 

  239. Panzer, S.: Mikroskop und Laser. Zeiss-Informationen 64 (1967) 50–54.

    Google Scholar 

  240. Rauxcser, G.: UBL 5001, ein Universal-Bearbeitungs-Laser. Siemens Z. 41 (1967) 273 bis 275.

    Google Scholar 

  241. Angerer, K., H. Boerscaet al.: Herstellung von Blendenbohrungen mit Laserstrahlung. Phys. Verh. 14 (1963) 162.

    Google Scholar 

  242. Harris, T. J.: High speed photographs of laser induced heating. 113M J. Ices. Dev. 7 (1963) 342–344.

    Google Scholar 

  243. Feldmann, D.: Lichttechnische Probleme in hochenergetischen Lasern. Lichttechnik 9 (1964) 445–448.

    Google Scholar 

  244. Ohne Verf.: Laser trims resistors to 0,05%. Electric Equipment Engineering 11, 11 (1963) 18.

    Google Scholar 

  245. Fine, S., E. Kleinurescot: Laser irradiation of biological systems. IEEE Spectrum 1, 4 (April 1964) 81.

    Google Scholar 

  246. Tomberg, V. T.: Non-thermal biological effects of laser beams. Nature 204, 4961 (Nov. 28, 1964 ) 868.

    Google Scholar 

  247. Koester, C. J., E. Snitzer, C. J. CampellU. M. C. Rittler: Experimental laser retina coagulator. J. Opt. Soc. Am. 52 (1962) 607.

    Google Scholar 

  248. Campell, C. J., M. C. RittlerU. C. J. Koester: The optical maser as a retina coagulator: an evaluation. Trans. Am. Acad. Ophthalmol. Otolaryngol 67 (1963) 58.

    Google Scholar 

  249. Zaret, M. M., G. M. Breinin, H. Schmidt, H. Ripps, I. M. Siegelu. L. R. Solon: Ocular lesions producted by an optical maser (laser). Science 134 (1961) 1525.

    Google Scholar 

  250. Zaret, M. M., H. Ripps, I. M. Siegelu. G. M. Breinin: Laser photocoagulation of the eye. A.M.A. Arch. Ophthalmol. 69 (1963) 97.

    Google Scholar 

  251. Frankhauser, F., u. W. Lothar: Radiation damage to the eye, specifically that caused by laser irradiation. Z. angew. Phys. 20, 6 (Mai 31, 1966 ) 521–524.

    Google Scholar 

  252. Wolbarsht, M. L., K. E. Fligstenu. J. R. Hayes: Retina: pathology of neodymium and ruby laser burns. Science 150, 3702 (Dez. 10, 1965 ) 1453–1454.

    Google Scholar 

  253. Schlickman, J. J., u. R. H. Kingston: The dark side of the laser, Electronics 38, 8 (April 19, 1965 ) 93–98.

    Google Scholar 

  254. Campell, C. J., M. C. Rittler, K. S. Noyori, C. H. Swopeu. C. J. Kester: The threshold of the retina to demage by laser energy. Arch. Ophthalmol. 76, 3 (Sept. 1966) 437 —442.

    Google Scholar 

  255. Vos, J. J.: Heat-demage to the retina by lasers and photocoagulators. Ophthalmologica 151, 6 (Juni 1966 ) 652–654.

    Google Scholar 

  256. L’esperance, F. A.: Xenon-arc and laser photocoagulation. Archives of Ophthalmology 75, 1 (Jan. 1966).

    Google Scholar 

  257. Kohtiao, A., I. Resnick, J. Newtonu. H. Schwell: Threshold lesions in rabbit retinas exposed to pulsed ruby laser radiation. Am. J. Ophthalmol. 62. 4 (Okt. 1966) 664 bis 669.

    Google Scholar 

  258. Kohtiao, A., 1. Resnick, J. NewtonU. H. Schwell: Temperature rise and photo-coagulation of rabbit retinas exposed to the cw-laser. Am. J. Ophthalmol. 62, 3 (Sept. 1966) 524–528.

    Google Scholar 

  259. Campell, C. J.: Application of fiber laser techniques to retinal surgery. Arch. Ophthalmol. 72 (Dez. 1964 ) 850.

    Google Scholar 

  260. Zweng, H. C., M. Flocks, N. S. Kapany, N. SilbertrustU. N. A. Peppers: Experimental laser coagulation. Am. J. Ophthalmol. 58 (Sept. 1964) 353–362.

    Google Scholar 

  261. Kapany, N. S., N. SilbertrustU. N. A. Peppers: Laser retinal photocoagulator. Appl. Opt. 4, 5 (Mai 1965 ) 517–522.

    Google Scholar 

  262. Pomerantzeff, O., C. L. SchepensU. H. M. Freeman: Studies in photocoagulation I.—IV. Brit. J. Ophthalmol. 48, 6 (Juni 1964 ) 298–317.

    Google Scholar 

  263. Campell, C. J., V. Curtice, K. S. Noyorllt. M. C. Rittler: Clinical studies in laser photocoagulation, Arch. Ophthalmol. 74, 1 (Juli 1965 ) 57–65.

    Google Scholar 

  264. Goldman, G., P. Hornby, P. Meyeru. B. Goldamtan: Impact of the laser on dental caries, Nature 203, 4943 (Juli 25, 1964 ) 417.

    Google Scholar 

  265. Taylor, R., G. Solaru. F. Roeber: The effects of laser radiation on teeth, dental pulp, and oral mucosa of experimental animals; Oral Surgery, Oral Medicine and Oral Pathology 19, 6 (Juni 1965 ) 786–795.

    Google Scholar 

  266. Jama Staff: Laser used with x-ray speeds tumor regression, J. Am. Med. Assoc. 196, 7 (Mai 16, 1966 ) 35.

    Google Scholar 

  267. Minton, J. P., u. A. S. Ketchalvm: The effect of neodymium laser radiation on two experimental malignant tumors systems, Surgery, Gynecology Obstetrics 120, 3 (März 1965 ) 481–487.

    Google Scholar 

  268. Goldman, L., R. Wilson, P. Hornbyu. R. Meyer: Laser radiation of malignancy in man. Cancer 18, 5 (Mai 1965 ) 533–545.

    Google Scholar 

  269. Goldman, L., R. Wilson, P. Hornbyu. R. Meyer: Lasers and cancer. Brit. Med. J. 1, 5442 (April 24, 1965 ) 1080–1081.

    Google Scholar 

  270. Rosomoff, H. L., R. Hellstrom, J. Brownu. F. Carroll: Effect of laser on carcinoma in man. J. Am. Med. Assoc. 192, 2 (April 12, 1965 ) 175–176.

    Google Scholar 

  271. Minton, J. P., G. H. Weissu. M. Zelen: Oncolysis with laser energy combined with chemotherapy. Nature 207, 4993 (Juli 10, 1965 ) 140–141.

    Google Scholar 

  272. Mcguff, P. E., R. A. Deterling, jr. u. L. S. Gottlteb: Laser radiation for metastatic malignant melanoma. J. Am. Med. Assoc. 195, 5 (Jan 31, 1966 ) 149–150.

    Google Scholar 

  273. Derr, V., E. Kleinu. S. Fine: Electron spin resonance tests of laser irradiated biological systems. Appl. Opt. 3, 6 (Juni 1964 ) 786–787.

    Google Scholar 

  274. Saks, N. M., u. C. A. Roth: A ruby laser as microsurgical instrument. Science 141 (1963) 46.

    Google Scholar 

  275. Lithwick, N. H., M. K. Healyu. J. Cohen : Micro-analysis of bone by laser microprobe. Surgical Forum 15 (1964) 439–441.

    Google Scholar 

  276. Malt, R. A.: Effects of laser radiation on subcellular components. Fed. Proc. 24, Nr. 1, Teil 3, Suppl. 14 (Jan.—Febr. 1965) S 122—S 125.

    Google Scholar 

  277. Fine, S., E. Kleiet al.: Interaction of laser radiation with biologic systems I. Studies on interaction with tissues. Fed. Proc. 24, Nr. 1, Teil 3, Suppl. 14 (Jan.—Febr. 1965) S 35—S 47.

    Google Scholar 

  278. Klein, E., et. al.: Interaction of laser radiation with biologic systems III. Studies on biologic systems in vitro, Fed. Prod. 24, Nr. 1, Teil 3, Suppl. 14 (Jan.-Febr. 1965 ) 5104–5110.

    Google Scholar 

  279. Simon, K. H.: Theory and medical uses of the laser. Med. Monatsschrift 20, 7, (Juli 1966 ) 301–304.

    Google Scholar 

  280. Johnson. F. M., R. Olsonu. D. E. Rounds: Effects of high-power green laser radiation on cells in tissue culture. Nature 205, 4972 (Febr. 13, 1965 ) 721–722.

    Google Scholar 

  281. Goldman, L., u. J. R. Rockwell: Laser action at the cellular level. J. Am. Med. Assoc. 198, 6, (Nov. 7 1966 ) 641–644.

    Google Scholar 

  282. Booth, A. D., R. S. C. Cobboldu. C. Wacler: Laser in cytology. Nature 203, 4946 (Aug. 15, 1964 ) 789.

    Google Scholar 

  283. Rosomoff, H. L., u. R. Carroll: Reaction of neoplasm and brain to laser. Arch. Neurology 14 (Febr. 1966 ) 143–148.

    Google Scholar 

  284. Ohne Verf.: New „Light Knife“ devised, at Bell Labs. for Medical Research, Bell Labs. Rec. 45, 5 (Mai 1967 ) 158.

    Google Scholar 

  285. Aagard, R. L., D. ChenU. G. N. Otto: Index of refraction measured by double-slit diffraction of coherent light from a gas laser. Appl. Opt. 3, 5 (1964) 643–644.

    ADS  Google Scholar 

  286. Arecchi, F. T., u. A. Sona: Long distance interferometry with a He–Ne laser. Proc. Int. Symp. Laser Phys. a. Appl., Z. angew. Math. Phys. (Schweiz) 16 (1965) 128–129.

    Google Scholar 

  287. Ballin, E. A.: Optical maser frequency stabilization and precise wavelength measurements. Phys. Letters 4, 3 (1963) 173–176.

    ADS  Google Scholar 

  288. Boersci, H., G. Herzigeru. H. Webe: Gekoppelte Laserresonatoren als Verstärker zur Messung optischer Konstanten. Phys. Letters 8, 2 (1964) 109–111.

    ADS  Google Scholar 

  289. Bloom, A. L., u. D. L. Wright: Pressure shifts in a stabilized single wavelength He–Ne laser. Bericht der Firma Spectra Physics.

    Google Scholar 

  290. Bose, H.: Utilisation du laser pour la mesure des distances. L’Onde Electrique 43, (1963) 738–747.

    Google Scholar 

  291. Bradsell, R. H.: Distance measurement by means of a light beam polarisation-modulated at a microwave frequency. Proc. 3rd. Int. Symp. on Quantum Electronics (Paris 1963), ed. by P. Grivet and N. Bloembergen, New York: Columbia University Press 1964, 1541–1547.

    Google Scholar 

  292. Brändli, H. P., R. Dändliker U. K. P. Meyer: Absolute frequency stabilization of a gas laser using optical resonance amplification techniques. IEEE J. Q. E. 2, 6 (1966) 153.

    Google Scholar 

  293. Buser, R. G., u. J. Kainz: Interferometrie measurements of rapid phase changes in the visible and near infrared using a laser light source. Appl. Opt. 3, 12 (1964) 1495–1499.

    Google Scholar 

  294. Chamberlain, J. E., u. H. A. Gebbie: Determination of the refractive index of a solid using a far infra-red maser. Nature 206 (1965) 602–603.

    Google Scholar 

  295. Cheo, P. K., u. C. V. Heer: Beat frequency between two traveling waves in a Fabry-Perot square cavity. Appl. Opt. 3, 6 (1964) 788–789.

    Google Scholar 

  296. Foreman, J. W. Jr., E. W. GeorgeU. R. D. Lewis: Measurement of localized flow velocities in gases with a laser doppler flow meter. Appl. Phys. Letters 7, 4 (1965) 77–78.

    ADS  Google Scholar 

  297. Gebhart, J., u. S. Schmidt: Interferenzerscheinungen an dünnen durchsichtigen Glasfäden bei kohärenter Beleuchtung. Z. angew. Phys. 19, 2 (1965) 141–143.

    Google Scholar 

  298. Gebhart, J., u. H. Straubel: Untersuchungen zur Lichtstreuung an absorptionsfreien kugelförmigen Einzelteilchen im Grenzbereich der geometrischen Optik. Z. angew. Phys. 20, 2 (1965) 145–149.

    Google Scholar 

  299. Harrison, A. E.: Solid-state light sources for distance-measuring equipment. Proc. IEEE 52, 1 (1964) 101.

    Google Scholar 

  300. Heer, C. V.: An experiment for the observation of the „Coriolis-Zeeman“ effect for photons. Proc. 3rd. Int. Symp. on Quantum Electronics (Paris 1963), ed. by P. Grivet and N. Bloembergen, New York: Columbia University Press 1964, 1305–1311.

    Google Scholar 

  301. Herziger, G., H. Lindneru. H. Weber: Messung geringer Absorptions-und Brechungsindexänderungen mit dem Laserverstärker. Z. angew. Phys. 17, 2 (1964) 67–68.

    Google Scholar 

  302. Jaseja, T. S., A. Javanu. C. H. Townes: Frequency stability of He–Ne masers and measurements of length. Phys. Rev. Letters 10, 5 (1963) 165–167.

    ADS  Google Scholar 

  303. Jaseja, T. S., u. A. Javan: He–Ne optical maser: A new tool for precision measure. ments. Lasers and Masers Applications, ed. by W. S. C. Chang, Ohio State Univ. (1963) 208.

    Google Scholar 

  304. Javan, A., T. S. Jasejau. C. H. Townes: Short-time frequency stability of He–Ne optical masers. Bull. Am. Phys. Soc. II 8 (1963) 380–381.

    Google Scholar 

  305. Klass, P. J.: Laser flowmeter measures gases. Fluids Aviation Week 82, 2 (1965) 75–77.

    Google Scholar 

  306. Kroger, R. D.: Motion sensing by optical heterodyne doppler detection from diffuse surfaces. Proc. IEEE 53, 2 (1965) 211–212.

    Google Scholar 

  307. Macek, W. M., u. D. T. M. Davis Jr.: Rotation rate sensing with traveling-wave ring lasers. Appl. Phys. Letters 2, 3 (1963) 67–68.

    Google Scholar 

  308. Macek, W. M., D. T. M. DavisJr., R. W.Olthuis, J. R. Schneideru. G. R. White: Ring laser rotation rate sensor. Optical Masers, ed. by J. Fox, Brooklyn: Polytechnic Press 1963, 199–209.

    Google Scholar 

  309. Macek, W. M., D. T. M. DavisJr., R. W. Olthuis, J. R. SchneiderU. G. R. White: Ring laser rotation rate sensor. Proc. 3rd. Int. Symp. on Quantum Electronics (Paris 1963), ed. by P. Grivet and N. Bloembergen, New York: Columbia University Press 1964, 1313–1317.

    Google Scholar 

  310. Macek, W. M., J. R. Schneideru. R. M. Salomon: Measurement of Fresnel drag with the ring laser. J. Appl. Phys. 35, 8 (1964) 2556–2557.

    Google Scholar 

  311. Mcnisn, A. G.: Lasers for length measurement. Science 146, 3641 (1964) 177–182.

    ADS  Google Scholar 

  312. Mazanko, I. P.: Über die Anwendung der Laser in der optischen Interferometrie. J. angew. Spektroskopie 1, 2 (1964) 153–157 (russ.).

    Google Scholar 

  313. Morokuma, T.: Interference fringes with long path difference using He—Ne laser. J. Opt. Soc. Am. 53, 3 (1963) 394–395.

    Google Scholar 

  314. Rocherolles, R., J. Robieuxu. G. Courrier: Télémétrie précise à grande distance à l’aide du laser. Onde Electrique 44, 445 (1964) 361–372.

    Google Scholar 

  315. Silverman, B. A., B. J. Thompsonu. J. H. Ward: A laser fog disdrometer. J. Appl. Meterology 3, 6 (1964) 792–801.

    ADS  Google Scholar 

  316. Smith, R. C., u. L. S. Watkins: A proposed method for reducing the locking frequency of a ring laser. Proc. IEEE 53, 2 (1965) 161.

    Google Scholar 

  317. Vali, V., R. S. Krogstadu. W. Vali: Measurement of earth tides and continental drift with laser interferometer. Proc. IEEE 52, 7 (1964) 857–858.

    Google Scholar 

  318. Stavis, G.: Optical diffraction velocimeter. Instr. Contr. Syst. 39, 2 (1966) 99–102.

    Google Scholar 

  319. Thornton, E.: Incorporation of a laser into the arm of an interferometer for measurement of transient phase changes. J. Appl. Phys. 36, 11 (1965) 3539–3541.

    ADS  Google Scholar 

  320. White, A. D.: Frequency stabilization of gas lasers. IEEE J. Q. E. QE-1 (1965) 349–357.

    Google Scholar 

  321. White, A. D.: Pressure-and current-dependent shifts in the center-frequency of the Doppler-broadened (2p4 —+ 3s2)A 20Ne transition. Appl. Phys. Letters 10 (1967) 24–26.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grau, G., Gürs, K., Müller, R. (1969). Anwendungen. In: Kleen, W., Müller, R. (eds) Laser. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87266-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87266-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87267-9

  • Online ISBN: 978-3-642-87266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics