Skip to main content

Trajectory Planning and Motion Control of Mobile Robots

  • Conference paper

Abstract

This paper addresses two aspects of the navigation problem for a two d.o.f mobile robot (non holomic system): trajectory planning and motion control. Trajectory planning concerns the existence and the generation of a feasible collision-free trajectory, and motion control the actual execution of this trajectory.

The problem has to be solved in constrained and non-constrained environment. We summarize some results previously obtained in non constrained space and develop a general approach for finding feasible trajectory in constrained space. This method is based on a result which characterizes the existence of a feasible trajectory by means of the existence of a connected open component in the admissible configuration space. Its current implementation, based on a configuration space structured into hyper-parallelepipeds, is described.

The trajectory is then analyzed in order to smooth it when possible, using clothoid curves. Its execution is controlled by means of comparing sensor readings with the local environment model along it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Avnaim and J-D. Boissonnat. A practical exact motion planning algorithm for polygonal objects admist polygonal obstacles. In IEEE, International Conference on Robotics and Automation, Philadelphia (USA) 1988.

    Google Scholar 

  2. Zhang Bo, Zhang Ling, and Zhang Jianwei. An efficient algorithm for findpath with rotation. Report Department of Computer Science, Beijing Univ., 1986.

    Google Scholar 

  3. M. Brady, J.M. Höllerbach, T.L. Johnson, T. Lozano-Perez, and M.T. Mason. Robot motion : planning and control. MIT Press, 1982.

    Google Scholar 

  4. R. A. Brooks. Solving the find-path problem by good representation of free space. IEEE journal on Systems, Man and Cybernetics, 2(13), 1983.

    Google Scholar 

  5. R. A. Brooks and T. Lozano-Perez. A subdivision algorithm in configuration space for findpath with rotation. IEEE journal on Systems, Man and Cybernetics, 2(15), 1985.

    Google Scholar 

  6. R. Chatila. Path planning and environment learning in a mobile robot system. In ECAI, Orsay (France) Juillet 1982.

    Google Scholar 

  7. R. Chatila and G. Giralt. Task and path planning for mobile robots. In NATO ARW on Machine Intelligence and Knowledge Engineering, Maratea (Italy) Mai 1986.

    Google Scholar 

  8. H. Chochon and Leconte B. Etude d’un module de locomotion pour un robot mobile. Rapport de fin d’étude ENSAE, Laboratoire d’Automatique et d’Analyse des Systèmes (C.N.R.S.), Toulouse (France), Juin 1983.

    Google Scholar 

  9. B. Faverjon. Object level programming of industrial robots. In IEEE, International Conference on Robotics and Automation, San Francisco (USA) 1986.

    Google Scholar 

  10. B. Faverjon and P. Tournassoud. A local based approach for path planning of manipulators with a high number of degrees of freedom. In IEEE, International Conference on Robotics and Automation, Raleigh (USA) 1987.

    Google Scholar 

  11. S. Fortune and G.T. Wilfong. Planning constrained motion. Technical Report, ATT Bell Laboratories, Murray Hill, Mai 1988.

    Google Scholar 

  12. L. Gouzènes. Strategies for solving collision-free trajectories problems for mobile or manipulator robot. International Journal of Robotics Research 3(4), Winter 1984.

    Google Scholar 

  13. L. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational geometry. 1983.

    Google Scholar 

  14. Y. Kanayama and N. Miyake. Trajectory generation for mobile robots. In G. Gi- ralt O. Faugeras, editor, Robotics Research 8 MIT Press, 1986.

    Google Scholar 

  15. O. Khatib. Real time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 1(5), 1986.

    Google Scholar 

  16. A. Khoumsi. Pilotage, asservissement sensoriel et localisation d’un robot mobile autonome. Thèse de l’Université Paul Sabatier, Toulouse (France), Laboratoire d’Automatique et d’Analyse des Systèmes (C.N.R.S.), Toulouse (France), Juin 1988.

    Google Scholar 

  17. J. P. Laumond. Obstacle growing in a nonpolygonal world. Information Processing Letters, 25(1), Avril 1987.

    Google Scholar 

  18. J.P. Laumond. Feasible trajectories for mobile robots with kinematic and environment constraints. In International conference on autonomous systems Amsterdam, Netherland, 1987.

    Google Scholar 

  19. J.P. Laumond. Finding collision-free smooth trajectories for a non-holonomic mobile robot. In 10th IJCAI, Milan (Italy) 1987.

    Google Scholar 

  20. T. Lozano-Perez. A simple motion planning algorithm for general robot manipulators. Robotics Research: The Third International Symposium, O. Faugeras and G. Giralt (Eds), MIT Press, Cambridge, Massachusetts, 1986.

    Google Scholar 

  21. T. Lozano-Perez. Spatial planning : a configuration space approach. IEEE Transaction Computer, 32(2), 1983.

    Google Scholar 

  22. B. Mysliwetz and E.D. Dickmanns. A vision system with active gaze control for real-time interpretation of well structured dynamic scenes. In F. C. A. Groen L. O. Hertzberger, editor, Intelligent Autonomous Systems, North Holland, 1987.

    Google Scholar 

  23. O’Dunlaing and C. Yap. A retraction method for planning a motion of a disk. J. of Algorithms, 6:104–111, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Reif. Complexity of mover’s problem and generalizations, pages 421–427,1979.

    Google Scholar 

  25. J. T. Schwartz and M. Sharir. On the piano mover : the case of a two dimensional rigid polynomial body moving amidst polygonal barriers. Communication on Pure and Applied Math, (36), 83.

    Google Scholar 

  26. J. T. Schwartz, M. Sharir, and J. Hopcroft. Planning, Geometry and Complexity of Robot Motion. Artificial Intelligence, Ablex, 1987.

    Google Scholar 

  27. T. Siméon. Planification de Trajectoires sans collision. Une approche par Espace des Configurations. In J.P. Laumond J.D. Boissonnat, editor, Journées géométrie et robotique, LAAS/CNRS, INRIA, Mai 1988.

    Google Scholar 

  28. P. Toumassoud. Motion planning for a mobile robot with a kinematic constraint. In IEEE Int. Conf. on Robotics and Automation, 1988.

    Google Scholar 

  29. R. Wallace, K. Matsuzaki, Y. Goto, J. Crisman, J. Webb, and T. Kanade. Progress in robot road-following. In IEEE Int. Conf. on Robotics and Automation, 1986.

    Google Scholar 

  30. E.T. Whittaker. A treatise on the analytical dynamics of particles and rigid bodies. Cambridge University Press. 4ème Ed., 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laumond, JP., Simeon, T., Chatila, R., Giralt, G. (1989). Trajectory Planning and Motion Control of Mobile Robots. In: Schweitzer, G., Mansour, M. (eds) Dynamics of Controlled Mechanical Systems. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83581-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83581-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83583-4

  • Online ISBN: 978-3-642-83581-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics