Skip to main content

Literaturverzeichnis

  • Chapter
  • 37 Accesses

Part of the book series: Nachrichtentechnik ((NACHRICHTENTECH,volume 17))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Abramowitz, M.; Stegun, I. A.: Handbook of Mathematical Functions. Dover Publications, INC., New York, 1965.

    Google Scholar 

  2. Adams, M. J.; Payne, D. N.; Ragdale, C. M.: Birefringence in optical fibers with elliptical cross-section. Electron. Lett. 15(1979)10, 298–299.

    Google Scholar 

  3. Auracher, F.; Schicketanz, D.; Zeitler, K.-H.: High-speed Δβ-reversal directional coupler modulator with low insertion loss for 1.3 gm in LiNbO3, J. Opt. Commun. 5(1984)1, 7–9.

    Google Scholar 

  4. Baack, C.; Bachus, E.-J.; Strebel, B.: Zukünftige Lichtträgerfrequenztechnik in Glasfasernetzen. NTZ 35(1982)11, 686–689.

    Google Scholar 

  5. Bachus, E.-J.; Böhnke, F.; Braun, R.-P.; Eutin, W.; Foisel, H.; Heimes, K.; Strebel, B.: Two-channel heterodyne-type transmission experiment. Electron. Lett. 21(1985)1, 35–36.

    Google Scholar 

  6. Barlow, A. J.; Payne, D. N.: Polarisation maintenance in circularly birefringent fibres. Electron. Lett. 17(1981)11, 388–389.

    Google Scholar 

  7. Basch, E. E.; Brown, T. G.: Introduction of coherent optical fiber transmission. IEEE Commun. Magazine 23(1985)5, 23–30.

    Google Scholar 

  8. Best, R.: Theorie und Anwendungen des Phase-locked Loops. Fachschriftenverband Aargauer Tagblatt AG, Aarau/Schweiz 1976.

    Google Scholar 

  9. Bonek, E.; Leeb, W. R.; Scholtz, A. L.; Philipp, H. K.: Optical PLLs see the light. Microwaves and RF (1983), 65–70.

    Google Scholar 

  10. Booth, R. C.: Integrated optic devices for coherent transmission. IOOC-ECOC (1985), 89–96.

    Google Scholar 

  11. Börner, M.: Lichtleitfaserübertragungstechnik und integrierte Optik- Wie geht es weiter? Professorenkonferenz im Fernmeldetechnischen Zentralamt-FTZ, Darmstadt, 1981.

    Google Scholar 

  12. Börner, M.: Die zukünftige Entwicklung der optischen Nachrichtentechnik. Proc. 6. Int. Kongreß Laser 83. Optoelektronik in der Technik (Hrsg. v. W. Waidlich ), Berlin, Springer-Verlag (1984), 425–434.

    Google Scholar 

  13. Börner, M.; Müller, R.: Silizium für die Integrierte Optoelektronik? ntz 41(1988)2, 64–75.

    Google Scholar 

  14. Braun, R.-P.; Ludwig, R.; Molt, R.: Ten-channel optic fibre transmission using an optical travelling wave amplifier. IOOC-ECOC (1986), 29–32.

    Google Scholar 

  15. Bronstein, I. N.; Semendjajew, K. A.: Taschenbuch der Mathematik, 19. Auflage. Harri Deutsch Verlag, Thun und Frankfurt/Main, 1980.

    Google Scholar 

  16. Burns, W. K.; Moeller, R. P.: Measurement of polarization mode dispersion in high-birefringence fibers. Optics Lett. 8 (1983) 3, 195–197.

    Google Scholar 

  17. Cramér, H.: Mathematical methods of statistics. 10. Aufl. Princeton University Press, Princeton 1963.

    Google Scholar 

  18. Cygan, D.: Berechnung der Wahrscheinlichkeitsdichtefunktion am Ausgang eines Filters bei beliebiger Eingangsverteilung und beliebiger Autokorrelationsfunktion. Diplomarbeit, TU München, Lehrstuhl für Nachrichtentechnik, 1986.

    Google Scholar 

  19. Cygan, D.; Franz, J.; Söder, G.: Einfluß eines Filters auf nicht-gaußverteilte Zufallsprozesse. AEC 40(1986)6, 377–384.

    Google Scholar 

  20. Daino, B.; Spano, P.; Tamburrini, M.; Piazolla, S.: Phase noise and spectral line shape in semiconductor laser IEEE J. QE-19(1983)3, 266–270.

    Google Scholar 

  21. Davis, A. W.; Pettitt, M. J.; King, J. P.; Wright, S.: Phase diversity techniques for coherent optical receivers. IEEE J. LT-5(1987)4, 561–572.

    Google Scholar 

  22. DeLange, O. E.: Wide-band optical communication systems: Part II - Frequency-division multiplexing. IEEE Proc. 58(1970)10, 1683–1690.

    Google Scholar 

  23. Dippold, M.: Die Entzerrung von Gradientenlichtwellenleitern mittels Quantisierter Rückkopplung. Dissertation, TU München, Lehrstuhl für Nachrichtentechnik, 1985.

    Google Scholar 

  24. Draper, N. R.; Tierney, D. E.: Exact formulas for additional terms in some important series expansions. Communications in statistics 1 (1973), 495–524.

    MathSciNet  Google Scholar 

  25. Dyott, R. B.; Cozens, J. R.; Morris, D. G.: Preservation of polarisation in optical-fibre waveguides with elliptical cores. Electron. Leu. 15(1979)13, 380–382.

    Google Scholar 

  26. Favre, F.; Jeunhomme, L.; Joindot, I.; Monerie, M.; Simon, J. C.: Progress towards heterodyne-type single-mode fiber communication systems. IEEE J. QE-17(1981)6, 897–906.

    Google Scholar 

  27. Favre, F.; Le Guen, D.: Emission frequency stability in single-mode-fibre optical feedback controlled semiconductor lasers. Electron. Lett. 19(1983)17, 663–665.

    Google Scholar 

  28. Felicio, D.: Der Einfluß des Laserphasenrauschens auf kohärent-optische Übertragungssysteme. Diplomarbeit, TU München, Lehrstuhl für Nachrichtentechnik, 1984.

    Google Scholar 

  29. Fischer, G.: The Faraday optical isolator. J. Opt. Commun. 8(1987)1, 18–21.

    Google Scholar 

  30. Fisher, R. A.; Cornish, E. A.: The percentile points of distributions having known comulants. Technometrics 2 (1960), 209–225.

    MATH  Google Scholar 

  31. Fleischmann, M.: Berechnung, Optimierung und Vergleich verschiedener optischer Übertragungssysteme mit Überlagerungsempfang. Diplomarbeit, TU München, Lehrstuhl für Nachrichtentechnik, 1987.

    Google Scholar 

  32. Fleischmann, M.; Franz, J.: Optimization of coherent optical homodyne systems. J. Opt. Commun. 9(1988)2.

    Google Scholar 

  33. Fleming, M. W.; Mooradian, A.: Spectral characteristics of external-cavity controlled semiconductor lasers. IEEE J. QE 17(1981)1, 44–59.

    Google Scholar 

  34. Fleming, M. W.; Mooradian, A.: Fundamental line broadening of single-mode (GaAI)As diode lasers. Appl. Phys. Lett. 38(1981)7, 511–513.

    Google Scholar 

  35. Franz, J.: Grundzüge des kohärent optischen Heterodynempfanges. TU München, Lehrstuhl für Nachrichtentechnik, Nachr.-techn. Ber. Band 14, 1985.

    Google Scholar 

  36. Franz, J.: Evaluation of the probability density function and bit error rate in coherent optical transmission systems including laser phase noise and additive gaussian noise. J. Opt. Commun. 6(1985)2, 51–57.

    Google Scholar 

  37. Franz, J.; Rapp, C.; Söder, G.: Influence of baseband filtering on laser phase noise in coherent optical transmission systems. J. Opt. Commun. 7(1986)1, 15–20.

    Google Scholar 

  38. Franz, J.; Helnerus, U.: Calculation of bit error rate in ASK heterodyne systems with envelope detection influenced by laser phase noise. Electron. Lett. 22(1986)20, 1072–1073.

    Google Scholar 

  39. Franz, J.: Receiver analysis of incoherent optical heterodyne systems. J. Opt. Commun. 8 (1987)2, 57–66.

    Google Scholar 

  40. Franz, J.: Berechung, Optimierung und Vergleich optischer Übertragungssysteme mit Überlagerungsempfang. Dissertation, TU München, Lehrstuhl für Nachrichtentechnik, 1987.

    Google Scholar 

  41. Gardner, F. M.: Phaselock Techniques. Pub. John Wiley and Sons Inc., New York, 1979.

    Google Scholar 

  42. Garrett, I.; Jacobsen, G.: Influence of (semiconductor) laser’ linewidth on the error-rate floor in dual-filter optical FSK receivers. Electron. Lett. 21(1985)7, 280–282.

    Google Scholar 

  43. Garrett, I.; Jacobsen, G.: Statistics of laser frequency fluctuations in coherent optical receivers. Electron. Lett. 22(1986)3, 168–170.

    Google Scholar 

  44. Garrett, I.; Jacobsen, G.: Theoretical analysis of heterodyne optical receivers for transmission systems using (semiconductor) lasers with nonnegligible linewidth. IEEE J. LT-4 (1986)3, 323–334.

    Google Scholar 

  45. Geckeler, S.: Lichtwellenleiter für die optische Nachrichtenübertragung. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  46. Glance B.: Polarisation independent coherent optical receiver. IEEE J..LT-5(1987)2, 274–276.

    Google Scholar 

  47. Goldberg, L.; Taylor, H. F.; Dandridge, A.; Weller, J. F.; Miles, R. O.: Spectral characteristics of semiconductor lasers with optical feedback. IEEE J. QE-18(1982)4, 555–564.

    Google Scholar 

  48. Goodwin, F. E.: A 3.39-micron infrared optical heterodyne communication system. IEEE J. QE-3(1967)11, 524–531.

    Google Scholar 

  49. Grau, G.: Optische Nachrichtentechnik. Springer-Verlag, Berlin, 1981.

    Google Scholar 

  50. Helnerus, U.: Der Einfluß des ZF-Filters auf das Laserphasenrauschen im optischen ASK-Heterodynempfänger mit Hüllkurvendemodulation. Diplomarbeit, TU München, Lehrstuhl für Nachrichtentechnik, 1986.

    Google Scholar 

  51. Henry, C.: Theory of the linewidth of semiconductor lasers. IEEE J. QE-18(1982)2, 259–264.

    MathSciNet  Google Scholar 

  52. Henry, C.: Theory of the phase noise and power spectrum of a single mode injection laser. IEEE J. QE-19(1983)9, 1391–1397.

    Google Scholar 

  53. Henry, C.: Phase noise in semiconductor lasers. IEEE J. LT-4(1986)3, 298–311.

    Google Scholar 

  54. Hodgkinson, T. G.: Phase-locked-loop analysis for pilot carrier coherent optical receivers. Electron. Lett. 21(1985)25/26, 1202–1203.

    Google Scholar 

  55. Hodgkinson, T. G.: Costas loop analysis for coherent optical receivers. Electron. Lett. 22 (1986)22, 394–396.

    Google Scholar 

  56. Hodgkinson, T. G.: Receiver analysis for synchronous coherent optical fibre transmission systems. IEEE J. LT-5(1987)4, 573–586.

    Google Scholar 

  57. Hodgkinson, T. G.; Harmon R. A.; Smith, D. W.: Polarisation-insensitive heterodyne detection using polarisation scrambling. Electron. Lett. 23(1987)10, 513–514.

    Google Scholar 

  58. Hodgkinson, T. G.; Harmon R. A.; Smith, D. W.: Performance comparision of ASK polarisation diversity and standard coherent optical heterodyne receivers. Electron. Lett. 24(1988)1, 58–59.

    Google Scholar 

  59. Hosaka, T.; Okamoto, K.; Sasaki Y.; Edahiro, T.: Single mode fibres with asymmetrical refractive index pits on both sides of core. Electron. Lett. 17(1981)5, 191–193.

    Google Scholar 

  60. Hosaka, T.; Okamoto, K.; Miya, T.; Sasaki Y.; Edahiro, T.: Low-loss single polarisation fibres with asymmetrical strain birefringence. Electron. Lett. 17(1981)15, 530–531.

    Google Scholar 

  61. Imoto, N.; Ikeda, M.: Polarization dispersion measurement in long single-mode fibers with zero dispersion wavelength at 1.5 µm. IEEE QE-17(1981)4, 542–545.

    Google Scholar 

  62. Jacobsen, G.; Garrett, I.: Error-rate floor in optical ASK heterodyne systems caused by nonzero (semiconductor) laser linewidth. Electron. Lett. 21(1985)7, 268–270.

    Google Scholar 

  63. Jacobsen, G.; Garrett, I.: The effect of laser linewidth on coherent optical receivers with asynchronous demodulation. IOOC-ECOC (1986), 61–66.

    Google Scholar 

  64. Jeunhomme, L.; Monerie, M.: Polarisation-maintaining single-mode fibre cable design. Electron. Lett. 16(1980)24, 921–922.

    Google Scholar 

  65. Kaminov, I. P.; Ramaswamy, V.: Single-polarization optical fibers: Slab model. Appl. Phys. Leu. 34(1979)4, 268–270.

    Google Scholar 

  66. Kaminov, I. P.: Polarization in optical fibers. IEEE J. QE-17(1981)1, 15–22.

    Google Scholar 

  67. Kasper, B. L.; Burrurs, C. A.; Telman, J. R.; Hall, K. L.: Balanced dual-detector receiver for optical heterodyne communication at Gbit/s rates. Electron. Lett. 22(1986)8, 413–414.

    Google Scholar 

  68. Katsuyama, T.; Matsumura, H.; Suganuma, T.: Low-loss single-polarisation fibres. Electron. Lett. 17(1981)13, 473–474.

    Google Scholar 

  69. Kazovsky, L. G.: Optical heterodyning versus optical homodyning: a comparison. J. Opt. Commun. 6(1985)1, 18–24.

    Google Scholar 

  70. Kazovsky, L. G.: Decision-driven phase-locked loop for optical homodyne receivers: performance analysis and laser linewidth requirements. IEEE J. LT-3(1985)6, 12381247.

    Google Scholar 

  71. Kazovsky, L. G.: Balanced phase-locked loops for optical. homodyne receivers: performance analysis, design considerations, and laser linewidth requirements. IEEE J. LT-4 (1986)2, 182–195.

    Google Scholar 

  72. Kazovsky, L. G.: Performance analysis and laser linewidth requirements for optical PSK heterodyne communications systems. IEEE J. LT-4(1986)4, 415–425.

    Google Scholar 

  73. Kazovsky, L. G.: Impact of phase noise on optical heterodyne communication systems. J. Opt. Commun. 7(1986)2, 66–78.

    Google Scholar 

  74. Kazovsky, L. G.; Meissner, P.; Patzak, E.: ASK multiport optical homodyne receivers. IOOC-ECOC (1986), 395–398.

    Google Scholar 

  75. Kazovsky, L. G.: Recent progress in phase and polarization diversity coherent optical techniques. ECOC (1987) Vol. I, 83–90.

    Google Scholar 

  76. Kersey, A. D.; Yurek, A. M.; Dandridge, A.; Weller, J. F.: New polarisation-insensitive detection technique for coherent optical fibre heterodyne communications. Electron. Lett. 23(1987)18, 924–926.

    Google Scholar 

  77. Kersten, R. T.: Einführung in die optische Nachrichtentechnik. Springer-Verlag, Berlin, 1983.

    Google Scholar 

  78. Kidoh, Y.; Suematsu, Y.; Furuya, K.: Polarization control on output of single-mode optical fibers. IEEE J. QE-17(1981), 991–994.

    Google Scholar 

  79. Kikuchi, K.; Okoshi, T.; Nagamatsu, M.; Henmi, N.: Bit-error rate of PSK heterodyne optical communication system and its degradation due to spectral spread of transmitter and local oscillator. Electron. Lett. 19(1983)11, 417–418.

    Google Scholar 

  80. Kikuchi, K.; Okoshi, T.; Nagamatsu, M.; Henmi, N.: Degradation of bit error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillatator. IEEE J. LT-2(1984), 1024–1033.

    Google Scholar 

  81. Kimura, T.: Coherent optical fiber transmission. IEEE J. LT-5(1987)4, 414–428.

    Google Scholar 

  82. Kobayashi, S.; Yamamoto, Y.; Ito, M.; Kimura, T.: Direct frequency modulation in A1GaAs semiconductor lasers. IEEE J. QE-18(1982)4, 582–595.

    Google Scholar 

  83. Kreit, D.; Youngquist, R. C.: Polarisation-insensitive optical heterodyne receiver for coherent FSK communications. Electron. Lett. 23 (1987)4, 168–169.

    Google Scholar 

  84. Kubota, M.; Oohara, T.; Furuya, K.; Suematsu, Y.: Electro-optical polarisation control on single-mode optical fibres. Electron. Lett. 16(1980)15, 573.

    Google Scholar 

  85. Künzel, T.: Simulation und Analyse optischer Überlagerungsempfänger unter Berücksichtigung des Laserphasenrauschens. Diplomarbeit, TU München, Lehrstuhl für Nachrichtentechnik, 1986.

    Google Scholar 

  86. Kuwahara, H.; Chikama, T.; Ohsawa, C.; Kiyonaga,T.: New receiver design for practical coherent ligthwave transmission system. IOOC-ECOC (1986), 407–410.

    Google Scholar 

  87. Lax, M.: Classical noise V. Noise in self-sustained oscillators. Phys. Rev. 160 (1967), 290.

    Google Scholar 

  88. Lee, T. P.: Linewidth of single-frequency semiconductor lasers for coherent lightwave communications. IOOC-ECOC (1985), 189–196.

    Google Scholar 

  89. Lefevre, H. C.: Single-mode fibre fractional wave devices and polarisation controllers. Electron. Lett. 16(1980)20, 778–780.

    Google Scholar 

  90. Linsenbreit, K.: Überlagerungsempfang mit Mehrtorkoppler. Diplomarbeit, TU München, Lehrstuhl für Nachrichtentechnik, 1987.

    Google Scholar 

  91. Love, J. D.; Sammut, R. A.; Snyder, A. W.: Birefringence in elliptically deformed optical fibres. Electron. Lett. 15(1979)20, 615–616.

    Google Scholar 

  92. Lutz, E.; Söder, G.; Tröndle, K.: Generation of discrete stochastic processes with given probability density and autocorrelation on a digital computer. 4. Seminar, Akademie der Wissenschaften der CSSR, Prag (1979), 308–329.

    Google Scholar 

  93. Lutz, E.; Tröndle, K.: Systemtheorie der optischen Nachrichtentechnik. Oldenburg-Verlag, München, 1983.

    Google Scholar 

  94. Machida, S.; Sakai, J.; Kimura, T.: Polarisation conservation in single-mode fibres. Electron. Lett. 17(1981)14, 494–495.

    Google Scholar 

  95. Mahon, C. J.; Khoe, G. D.: Compensational deformation; new endless polarisation matching control schemes for optical homodyne or heterodyne receivers which require no mechanical drivers. IOOC ECOC (1986), 267–270.

    Google Scholar 

  96. Mahon, C. J.; Khoe, G. D.: Endless polarisation state matching control experiment using two controllers of finite control range. Electron. Lett. 23(1987)23, 1234–1235.

    Google Scholar 

  97. Mahr, H.: Ein Plädoyer für den Begriff Frequenzmultiplex in der optischen Nachrichtentechnik. Frequenz 39(1985)12, 314–319.

    Google Scholar 

  98. Malyon, D. J.; Hodgkinson, T. G.; Smith, D. W.; Booth, R. C.; Daymond-John, B. E.: PSK homodyne receiver sensitivity measurements at 1.5 µm. Electron. Lett. 19(1983)4, 144–146.

    Google Scholar 

  99. Marko, H.: Optimale und fast optimale binäre und mehrstufige digitale Übertragungssysteme. AEU 28 (1974), 402–414.

    Google Scholar 

  100. Marko, H.: Methoden der Systemtheorie. Springer-Verlag, Berlin, 1977.

    MATH  Google Scholar 

  101. Mochizuki, K.; Namihira, Y.; Wakabayashi, H.: Polarisation mode dispersion measurements in long single mode fibres. Electron. Lett. 17(1981)4, 153–154.

    Google Scholar 

  102. Monerie, M.: Polarisation-maintaining single-mode fibre cables: influence of joints. Appl. Optics 20 (1980), 712–713.

    Google Scholar 

  103. Monerie, M.; Lamouler, P.; Jeunhomme, L.: Polarisation mode dispersion measurements in long single mode fibres. Electron. Lett. 16(1980)24, 970–908.

    Google Scholar 

  104. Monerie, M.; Jeunhomme, L.: Polarization mode coupling in long single-mode fibres. Optical and Quantum Electronics 12 (1980), 449–461.

    Google Scholar 

  105. Monerie, M.; Lamouler, P.: Birefringence measurement in twisted single-mode fibres. Electron. Lett. 17(1981)7, 252–253.

    Google Scholar 

  106. Namihira, Y.; Ryu, S.; Mochizuki, K.; Furusawa, K.; Iwamoto, Y.: Polarisation fluctua-don in optical-fibre submarine cable under 8000 m deep sea environmental conditions. Electron. Lett. 23(1987)3, 100–101.

    Google Scholar 

  107. Namihira, Y.; Horiuchi, Y.; Wakabayashi, H.: Dynamic polarisation fluctuation characteristics of optical-fibre submarine cable coupling under periodic variable tension. Electron. Lett. 23(1987)22, 1201–1202.

    Google Scholar 

  108. Nicholsen, G.: ASK homodyne system receiver using a 6-port fiber coupler. J. Opt. Commun. 9(1988)1, 13–16.

    Google Scholar 

  109. Noé, R.: Entwurf and Aufbau von unterbrechungsfreien Polarisationsnachführungen im optischen Überlagerungsempfang. Dissertation, TU München, Lehrstuhl für Nachrichtentechnik, 1987.

    Google Scholar 

  110. Noé, R.: Endless polarisation control in coherent optical communications. Electron. Leu. 22 (1986)15, 772–773.

    Google Scholar 

  111. Noé, R.: Endless polarisations control experiment with three elements of limited birefringence range. Electron. Leu. 22(1986)25, 1341–1343.

    Google Scholar 

  112. Nussmeier, T. A.; Goodwin, F. E.; Zavin, J. E.: A 10.6-gm terrestrial communication link. IEEE J. QE-10 (1974) 2, 230–235.

    Google Scholar 

  113. Okamoto, K.; Sasaki, Y.; Miya, T.; Kawachi, M.; Edahiro, T.: Polarisation characteristics in long length v.a.d. single-mode fibres. Electron. Lett. 16(1980)25, 768–769.

    Google Scholar 

  114. Okamoto, K.; Hosaka, T.; Edahiro, T.: Stress analysis of single polarization fibers. Review of the Electrical Communication Labarotories Vo. 31(1983)3, 381–392.

    Google Scholar 

  115. Okoshi, T.; Kikuchi, K.; Nakayama, A.: Novel method for high resolution measurement of laser output spectrum. Electron. Lett. 16(1980)16, 630–631.

    Google Scholar 

  116. Okoshi; T; Oyamada, K.: Single-polarisation single-mode optical fibre with refractive index-pits on both sides of core. Electron. Lett. 16(1980)18, 712–713.

    Google Scholar 

  117. Okoshi, T.; Emura, K.; Kikuchi, K.; Kersten, R. Th.: Computation of bit-error rate of various heterodyne-and coherent-type optical communication schemes. J. Opt. Commun. 2(1981)3, 89–96.

    Google Scholar 

  118. Okoshi, T.; Kikuchi, K.: Heterodyne-type optical fiber communications. J. Opt. Commun. 2(1981)3, 82–88.

    Google Scholar 

  119. Okoshi, T.; Ryu, S.; Emura, K.: Measurement of polarization parameters of a single-mode optical fiber. J. Opt. Commun. 2(1981)4, 134–141.

    Google Scholar 

  120. Okoshi, T.: Single-polarization single-mode optical fibers. IEEE J. QE-17(1981), 879–884.

    Google Scholar 

  121. Okoshi, T.: Review of polarization-maintaining single-mode fiber. ECOC (1983), 57–59.

    Google Scholar 

  122. Okoshi, T.; Ryu, S.; Kikuchi, K.: Polarisation-diversity receiver for heterodyne/coherent optical fiber communications. 4. IOOC, Tokyo (1983), 386–387.

    Google Scholar 

  123. Okoshi, T.: Ultimate performance of heterodyne/coherent optical fiber communications. IEEE J. LT-4(1986)10, 1556–1562.

    Google Scholar 

  124. Okoshi, T.; Cheng, Y. H.: Four-port homodyne receiver for optical fibre communications comprising phase and polarisation diversities. Electron. Lett. 23(1987)8, 377–378.

    Google Scholar 

  125. Okoshi, T.: Recent advances in coherent optical fiber communication systems. IEEE J. LT-5(1987)1, 44–52.

    Google Scholar 

  126. Papoulis, A.: Probability, random variables and stochastic processes. McGraw-HillVerlag, 1985.

    Google Scholar 

  127. Payne, D. N.; Barlow, A. J.; Ramskow-Hansen, J. J.: Development of low- and high birefringence optical fibers. IEEE J. QE-18(1982)4, 477–488.

    Google Scholar 

  128. Pettitt, M. J.; Remedios, D.; Davis, A. W.; Hadjifotiou, A.; Wright, S.: Optical FSK transmission system using a phase-diversity receiver. Electron. Lett. 23(1987)20, 1075–1076.

    Google Scholar 

  129. Piazzolla, S.; Spano, P.; Tamburrini M.: Characterization of phase noise in semiconductor lasers. Appl. Phys. Lett. 41(1982)8, 695–696.

    Google Scholar 

  130. Piazzolla, S.; Spano, P.: Analytical evaluation of the line shape of single-mode semiconductor lasers. Optics Commun. 51(1984)4, 278–280.

    Google Scholar 

  131. Pietzsch, J.: Der Einfluß des Phasenrauschen auf die Fehlerquote bei Übertragung von frequenzmodulierten Signalen. AEC 42(1988)2, 132–138.

    Google Scholar 

  132. Poole, C. D.; Bergano, N. S.; Wagner, R. E.; Schulte, H. J.: Polarisation dispersion in a 147 km undersea lightwave cable. ECOC 1987 Vol. I, 321–324.

    Google Scholar 

  133. Poole, C. D.; Bergano, N. S.; Schulte, H. J.; Wagner, R. E.; Nathu, V. P.; Amon, J. M.; Rosenberg, R. L.: Polarisation fluctuations in an 147 km undersea lightwave cable during installation. Electron. Lett. 23(1987)21, 1113–1115.

    Google Scholar 

  134. Purcell, E. M.: Elektrizität und Magnetismus, Berkeley Physik Kurs Band 2. Vieweg-Verlag, Braunschweig, 1979.

    Google Scholar 

  135. Ramachandran, G. N.; Ramaseshan, S.: Crystal optics. In Handbuch der Physik Band 25/1 (S. Flügge), Springer-Verlag, Berlin, 1962.

    Google Scholar 

  136. Ramaswamy, V.; French, W. G.; Standley, R. D.: Polarization characteristics on noncircular core single-mode fibers. Appl. Optics 17(1978)18, 3014–3017.

    Google Scholar 

  137. Ramaswamy, V.; Kaminov, I. P.; Kaiser, P.: Single polarization optical fibers: exposed cladding technique. Appl. Phys. Lett. 33(1978)9, 814–816.

    Google Scholar 

  138. Ramaswamy, V.; Standley, R. D.; Sze, D.; French, W. G.: Polarization effects in short length, single mode fibers. Bell Systems T. J. 57 (1978), 635–651.

    Google Scholar 

  139. Rapp, C.: Optische Komponenten für die optische Nachrichtenübertragung. Studienarbeit, TU München, Lehrstuhl für Nachrichtentechnik, 1984.

    Google Scholar 

  140. Rashleigh, S. C.; Stolen, R. H.: Preservation of polarization in single-mode fibers. Fiber-optic Techn. (1983)5,155–161.

    Google Scholar 

  141. Rocks, M.: Optischer Überlagerungsempfang: Die Technik der übernächsten Generation glasfasergebundener optischer Nachrichtensysteme. Der Fernmelde-Ingenieur 3 (1985)2.

    Google Scholar 

  142. Russer, P.: Hochfrequenztechnik I. Vorlesungsskriptum, Technische Universität München, 1981.

    Google Scholar 

  143. Saito, S.; Yamamoto, Y.; Kimura, T.: Optical heterodyne detection of directly frequency modulated semiconductor laser signals. Electron. Lett. 16(1980)22, 826–827.

    Google Scholar 

  144. Saito, S.; Yamamoto, Y.: Direct observation of lorentzian lineshape of semiconductor laser and linewidth reduction with external grating feedback. Electron. Lett. 17(1981)9, 325–327.

    Google Scholar 

  145. Saito, S.; Nilsson, O.; Yamamoto, Y.: Oscillation center frequency tuning, quantum FM noise, and direct frequency modulation characteristics in external grating loaded semiconductor lasers. IEEE J. QE-18(1982)6, 961–970.

    Google Scholar 

  146. Saito, S.; Yamamoto, Y.; Kimura, T.: S/N and error rate evaluation for an optical FSK heterodyne detection system using semiconductor lasers. IEEE J. QE-19(1983)2, 180–193.

    Google Scholar 

  147. Sakai, J.-I.; Kimura, T.: Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations. IEEE J. QE-17(1981)6, 1041–1051.

    Google Scholar 

  148. Sakai, J.-I.; Machida, S.; Kimura, T.: Existence of eigen polarization modes in anisotropic single-mode optical fibers. Optics Lett. 6(1981)10, 496–498.

    Google Scholar 

  149. Sakai, J.-I.; Kimura, T.: Polarization behavior in multiply perturbed single-mode fibers. IEEE J. QE-18(1982)1, 59–65.

    Google Scholar 

  150. Sakai, J.-I.; Machida, S.; Kimura, T.: Degree of polarization in anisotropic single-mode optical fibers: theory. IEEE J. QE-18(1982)4, 488–495.

    Google Scholar 

  151. Sakai, J.-I.; Machida, S.; Kimura, T.: Twisted single-mode optical fiber as polarization-maintaining fiber. Review of Electrical Communication Laboratories Vol. 31(1983)3, 372–380.

    Google Scholar 

  152. Sasaki, Y.; Shibata, N.; Hosaka, T.: Fabrication of polarization-maintaining and absorption-reducing optical fibers. Review of Electrical Communication Laboratories Vol.31 (1983)3, 400–409.

    Google Scholar 

  153. Salz, J.: Coherent lightwave communications. AT and T Techn. J. 64(1985)10, 2153–2209.

    Google Scholar 

  154. Schaller, H. N.: Berechnung optischer DPSK-Überlagerungssysteme unter Berücksichtigung des Laserphasenrauschens. Diplomarbeit, TU München, Lehrstuhl für Nachrichtentechnik, 1987.

    Google Scholar 

  155. Schneider, R.; Pietzsch, J.: Coherent 565 Mbit/s DPSK transmission experiment with a phase diversity receiver. ECOC (1987), Vol. III, 5–8.

    Google Scholar 

  156. Scholz, A.; Leeb, W. R.; Philipp, H. K.: Detection homodyne pour systemes de communication laser. IOOC-ECOC (1982), 541–546.

    Google Scholar 

  157. Scholz, A.; Philipp, H. K.; Leeb, W. R.: Receiver concepts for data transmission at 10 microns. ESA SP-202 (1984), 107–114.

    Google Scholar 

  158. Shibata, N.; Okamoto, K.; Sasaki, Y.: Structure design for polarization-maintaining and absorption-reducing optical fibers. Review of Electrical Communication Laboratories Vol. 31 (1983)3, 393–399.

    Google Scholar 

  159. Smith, D. W.; Stanley, I. W.: The worldwide status of coherent optical fibre transmission systems. IOOC-ECOC (1983), 263–266.

    Google Scholar 

  160. Söder, G.; Tröndle, K.: Digitale Übertragungssysteme. Springer-Verlag, Berlin, 1984

    Google Scholar 

  161. Spahi, A.: Der Einfluß des thermischen Widerstandsrauschens und des Schroteffektes auf die Störmodulation von Oszillatoren. Bulletin des schweizerischen Elektrotechnischen Vereins, 39(1948)13, 419–426.

    Google Scholar 

  162. Spano, P.; Piazzolla, S.; Tamburrini, M.: Phase noise in semiconductor lasers: A theoretical approach. IEEE J. QE-19(1983)7, 1195–1199.

    Google Scholar 

  163. Stein, S.; Jones, J. J.: Modern communication principles. McGraw-Hill Book Company, 1967.

    Google Scholar 

  164. Stolen, R. H.; Ramaswamy, V.; Kaiser, P.; Pleibel, W.: Linear polarization in birefringent single-mode fibers. Appl. Phys. Lett. 33(1978)8, 699–701.

    Google Scholar 

  165. Tamburrini, M.; Spano, P.; Piazzolla, S.: Influence of semiconductor-laser phase noise on coherent optical communication systems. Optics. Lett. 8(1983)3, 174–176.

    Google Scholar 

  166. Tatam, R. P.; Pannell, C. N.; Jones, J. D. C.; Jackson, D. A.: Full polarisation state control utilizing linearly birefringent monomode optical fiber. J. LT-5(1987)7, 980–985.

    Google Scholar 

  167. Tjaden, D. L. A.: Birefringence in single-mode optical fibres due to core ellipticity. Phillips J. Res. 33 (1978)5/6, 254–263.

    Google Scholar 

  168. Tradowsky, K.: Laser kurz und bündig. Vogel-Verlag, Würzburg, 1977.

    Google Scholar 

  169. Treiber, H.: Laser Technik. Frech-Verlag, Stuttgart, 1982.

    Google Scholar 

  170. Tzeng, L. D.; Emkey, W. L.; Jack, C. A.; Burrus, C. A.: Polarisation-insensitive coherent receiver using a double balanced optical hybrid system. Electron. Lett. 23(1987)22, 1195–1196.

    Google Scholar 

  171. Ulrich, R.: Polarization stabilization on single-mode fiber. Appl. Phys. Lett. 35 (1979), 840–842.

    Google Scholar 

  172. Ulrich, R.; Simon, A.: Polarization optics of twisted single-mode fibers. Appl. Optics 18 (1979)13, 2241–2251.

    Google Scholar 

  173. Unger, H.-G.: Optische Nachrichtentechnik. Elitera-Verlag Berlin 1967.

    Google Scholar 

  174. Unger, H.-G.: Optische Nachrichtentechnik Teil II. Dr. Alfred Hüthing-Verlag, Heidelberg, 1985.

    Google Scholar 

  175. Vahala, K.; Yariv, A.: Semiclassical theory of noise in semiconductor lasers-Part I. IEEE J. QE-19(1983)6, 1096–1101.

    Google Scholar 

  176. Vahala, K.; Yariv, A.: Semiclassical theory of noise in semiconductor lasers-Part II. IEEE J. QE-19(1983)6, 1102–1109.

    Google Scholar 

  177. Wagner, R. E.: Coherent optical systems technology. ECOC (1986), 71–78.

    Google Scholar 

  178. Yamamoto, Y.: Receiver performance evaluation of various digital optical modulation-demodulation systems in the 0,5–10 µm wavelength region. IEEE J. QE-16(1980)11, 1251–1259.

    Google Scholar 

  179. Yamamoto, Y.; Kimura, T.: Coherent optical transmission systems. IEEE J. QE-17 (1981)6, 919–934.

    Google Scholar 

  180. Yamamoto, Y.: AM and FM quantum noise in semiconductor lasers-Part I: Theoretical analysis. IEEE J. QE-19(1983)1, 34–46.

    Google Scholar 

  181. Yamamoto, Y.; Saito, S.; Mukai, T.: AM and FM quantum noise in semiconductor lasers Part II: Comparison of theoretical and experimental results for AlGaAs lasers. IEEE J. QE-19(1983)1, 47–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franz, J. (1988). Literaturverzeichnis. In: Optische Übertragungssysteme mit Überlagerungsempfang. Nachrichtentechnik, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83575-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83575-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50189-3

  • Online ISBN: 978-3-642-83575-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics