Skip to main content

Can DNA Methylation Regulate Gene Expression?

  • Chapter
Modified Nucleosides and Cancer

Abstract

The DNA from many different animals contains 5-methyl-cytosine (m5C) in addition to the four DNA bases (Wyatt 1951; Vanyushin et al. 1970). m5C is predominantly found in the sequence m5CpG (Grippo et al. 1968), and is known to arise by the direct methylation of cytosine residues in DNA (Sneider and Potter 1969; Burdon and Adams 1969). There is considerable variation in the degree of methylation in DNA from different animals (Waalwijk and Flavell 1978b; Drahovsky et al. 1979; Bird and Taggart 1980; Eden et al. 1981).

We thank Armin Kressmann and Marco Maechler, Zürich, for help with the microinjection experiments, Howard Cedar, Jerusalem, for providing the HpaII DNA methyltransferase, and Gertrud Deutschländer for typing the manuscript. This research was supported by grants from the Ministry of Science and Research of the State of North Rhine-Westphalia (IIB5-FA8381) and by the Deutsche Forschungsgemeinschaft through SFB 74

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker CC, Ziff EB (1981) Promoters and Heterogeneous 5’ termini of the messenger RNAs of adenovirus serotype 2. J Mol Biol 149: 189–221

    Article  PubMed  CAS  Google Scholar 

  • Behe M, Felsenfeld G (1981) Effects of methylation on a snythetic polynucleotide: The B-Z transition in poly(dG-m5dC) • poly(dG-m5dC). Proc Natl Acad Sci USA 78: 1619–1623

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S-l endonuclease-digested hybrids. Cell 12:721–732

    Article  PubMed  CAS  Google Scholar 

  • Bird AP, Taggart MH (1980) Variable patterns of total DNA and rDNA methylation in animals. Nucleic Acids Res 8: 1485–1497

    Article  PubMed  CAS  Google Scholar 

  • Bird AP, Taggart MH, Gehring CA (to be published) Methylated and unmethylated ribosomal RNA genes in the mouse. Cell

    Google Scholar 

  • Bolivar F, Rodriguez R, Greene PJ, Betlach MC, Heyneker HL, Boyer HW (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113

    Article  PubMed  CAS  Google Scholar 

  • Burdon RH, Adams RLP (1969) The in vivo methylation of DNA in mouse fibroblasts. Biochim Biophys Acta 174:322–329

    PubMed  CAS  Google Scholar 

  • Chow LT, Broker TR, Lewis JB (1979) Complex splicing patterns of RNAs from the early regions of adenovirus-2. J Mol Biol 134:265–303

    Article  PubMed  CAS  Google Scholar 

  • Constantinides PG, Jones PA, Gevers W (1977) Functional striated muscle cells from nonmyoblast precursors following 5-azaeytidine treatment. Nature 267:364–366

    Article  PubMed  CAS  Google Scholar 

  • Cook JL, Lewis AM (1979) Host response to adenovirus 2-transformed hamster embryo cells. Cancer Res 39:1455–1461

    PubMed  CAS  Google Scholar 

  • Desrosiers RC, Mulder C, Fleckenstein B (1979) Methylation of Herpesvirus saimiri DNA in lymphoid tumor cell lines. Proc Natl Acad Sci USA 76: 3839–3843

    Article  PubMed  CAS  Google Scholar 

  • Deuring R, Winterhoff U, Tamanoi F, Stabel S, Doerfler W (1981) The site linkage between adenovirus type 12 and cell DNAs in hamster tumor line CLAC3. Nature 293:81–84

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1981) DNA methylation -A regulatory signal in eukaryotic gene expression. J Gen Virol 57:1–20

    Article  PubMed  CAS  Google Scholar 

  • Drahovsky D, Boehm TLJ, Kreis W (1979) Distribution pattern and enzymic hypermethylation of inverted repetitive DNA sequences in P815 mastocytoma cells. Biochim Biophys Acta 563:28–35

    PubMed  CAS  Google Scholar 

  • Eden FC, Musti AM, Sobieski DA (1981) Clusters of repeated sequences of chicken DNA are extensively methylated but contain specific undermethylated regions. J Mol Biol 148: 129–151

    Article  PubMed  CAS  Google Scholar 

  • Esche H (to be published) Viral gene products in adenovirus type 2 transformed hamster cells. J Virol

    Google Scholar 

  • Goldenberg CJ, Rosenthal R, Bhaduri S, Raskas H (1981) Coordinate regulation of two cytoplasmic RNA species transcribed from early region 2 of the adenovirus 2 genome. J Virol 38:932–939

    PubMed  CAS  Google Scholar 

  • Grippo P, Iaccarino M, Parisi E, Scarano E (1968) Methylation of DNA in developing sea urchin embryos. J Mol Biol 36: 195–208

    Article  PubMed  CAS  Google Scholar 

  • Groudine M, Eisenmann R, Weintraub H (1981) Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 292: 311–317

    Article  PubMed  CAS  Google Scholar 

  • Guntaka RV, Rao PY, Mitsialis SA, Katz R (1980) Modification of avian sarcoma proviral DNA sequences in nonpermissive XC cells but not in permissive chicken cells. J Virol 34:569–572

    PubMed  CAS  Google Scholar 

  • Günthert U, Schweiger’M, Stupp M, Doerfler W (1976) DNA methylation in adenovirus, adenovirus-transformed cells, and host cells. Proc Natl Acad Sci USA 73:3923–3927

    Article  PubMed  Google Scholar 

  • Johannsson K, Persson H, Lewis AM, Pettersson U, Tibbetts C, Philipson L (1978) Viral DNA sequences and gene products in hamster cells transformed by adenovirus type 2. J Virol 27:629–639

    Google Scholar 

  • Kressmann A, Birnstiel ML (1980) Transfer of cell constituents into eukaryotic cells. NATO Adv Study Inst Ser 31: 383–407

    Google Scholar 

  • Kuo MT, Mandel JL, Chambon P (1979) DNA methylation: correlation with DNase I sensitivity of chicken ovalbumin and conalbumin chromatin. Nucleic Acids Res 7:2105–2113

    Article  PubMed  CAS  Google Scholar 

  • Lafer EM, Möller A, Nordheim A, Stollar BD, Rich A (1981) Antibodies specific for lefthanded Z-DNA. Proc Natl Acad Sci USA 78:3546–3550

    Article  PubMed  CAS  Google Scholar 

  • Mandel JL, Chambon P (1979) DNA methylation: organ specific variations in the methylation pattern within and around ovalbumin and other chicken genes. Nucleic Acids Res 7:2081–2103

    Article  PubMed  CAS  Google Scholar 

  • Mann MB, Smith HO (1977) Specificity of HpaII and HaeIII methylases. Nucleic Acids Res 4:4211–4221

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing endlabeled DNA with base-specific chemical cleavages. Methods Enzymol 65: 499–560

    Article  PubMed  CAS  Google Scholar 

  • Ortin J, Scheidtmann KH, Greenberg R, Westphal M, Doerfler W (1976) Transcription of the genome of adenovirus type 12. III. Maps of stable RNA from productively infected cells and abortively infected and transformed hamster cells. J Virol 20: 355–372

    PubMed  CAS  Google Scholar 

  • Quint A, Cedar H (1981) In vitro methylation of DNA with HpaII methylase. Nucleic Acids Res 9:633–646

    Article  PubMed  CAS  Google Scholar 

  • Richardson CC (1965) Phosphorylation of nucleic acid by an enzyme from T-4 bacterio-phage-infected Escherichia coli. Proc Natl Acad Sci USA 54: 158–165

    Article  PubMed  CAS  Google Scholar 

  • Rigby PJW, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Article  PubMed  CAS  Google Scholar 

  • Roberts RJ (1980) Restriction and modification enzymes and their recognition sequences. Nucleic Acids Res 8: r63–r80

    Article  PubMed  CAS  Google Scholar 

  • Schirm S, Doerfler W (1981) The expression of viral DNA in adenovirus type 12-transformed cells and in revertants. J Virol 39: 694–702

    PubMed  CAS  Google Scholar 

  • Sneider TW (1980) The 5’-cytosine in CCGG is methylated in two eukaryotc DNAs and MspI is sensitive to methylation at this site. Nucleic Acids Res 8:3829–3840

    Article  PubMed  CAS  Google Scholar 

  • Sneider TW, Potter VR (1969) Methylation of mammalian DNA: studies on Novikoff hepatoma cells in tissue culture. J Mol Biol 42:271–284

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Sutter D, Doerfler W (1979) Methylation of integrated viral DNA sequences in hamster cells transformed by adenovirus 12. Cold Spring Harbor Symp Quant Biol 44: 565–568

    Google Scholar 

  • Sutter D, Doerfler W (1980) Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is inversely correlated with viral gene expression. Proc Natl Acad Sci USA 77:253–256

    Article  PubMed  CAS  Google Scholar 

  • Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:771–779

    Article  PubMed  CAS  Google Scholar 

  • Telford JL, Kressmann A, Koski RA, Grosschedl R, Müller F, Clarkson SG, Birnstiel ML (1979) Delimitation of a promoter for RNA polymerase III by means of a functional test. Proc Natl Acad Sci USA 76:2590–2594

    Article  PubMed  CAS  Google Scholar 

  • Vanyushin BF, Tkactieva SG, Belozersky AN (1970) Rare bases in animal DNA. Nature 225:948–949

    Article  PubMed  CAS  Google Scholar 

  • Vardimon L, Doerfler W (1981) Patterns of integration of viral DNA in adenovirus type 2-transformed hamster cell lines. J Mol Biol 147:227–246

    Article  PubMed  CAS  Google Scholar 

  • Vardimon L, Sutter D, Neumann R, Kuhlmann I, Doerfler W (1980) Methylation of adenovirus DNA in transformed and infected cells. Nucleic Acids Res 8: 2461–2473

    Article  PubMed  CAS  Google Scholar 

  • Vardimon L, Kuhlmann I, Cedar H, Doerfler W (1981) Methylation of adenovirus genes in transformed cells and in vitro: Influence of the regulation of gene expression? Eur J Cell Biol 25:13–15

    PubMed  CAS  Google Scholar 

  • Waalwijk C, Flavell RA (1978a) Mspl, an isoschizomer of HpaII which cleaves both unmethylated and methylated HpaII sites. Nucleic Acids Res 5:3231–3236

    Article  PubMed  CAS  Google Scholar 

  • Waalwijk C, Flavell RA (1978b) DNA methylation at a CCGG sequence in the large intron of the rabbit ß-globin gene: tissue specific variations. Nucleic Acids Res 5: 4631–4641

    Article  PubMed  CAS  Google Scholar 

  • Wyatt GR (1951) Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem J 48:581–584

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin • Heidelberg

About this chapter

Cite this chapter

Vardimon, L., Renz, D., Doerfler, W. (1983). Can DNA Methylation Regulate Gene Expression?. In: Nass, G. (eds) Modified Nucleosides and Cancer. Recent Results in Cancer Research/Fortschritte der Krebsforschung/Progrès dans les recherches sur Ie cancer, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81947-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81947-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81949-0

  • Online ISBN: 978-3-642-81947-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics