Skip to main content

Perturbation of the Mitochondrial Lysine tRNA Population by Virus-Induced Transformation or Stress of Mammalian Cells: Functional Properties and Nucleotide Sequence of a Mitochondrially Associated Lysine tRNA

  • Chapter
Modified Nucleosides and Cancer

Abstract

Depending on the source of mammalian cells and their growth state, 11 isoaccepting tRNAs for lysine can be demonstrated by RPC-5 chromatography or in combination with polyacrylamide gel electrophoresis. A composite profile illustrating these isoacceptors is shown in Fig. 1. The isoacceptors 1, 2, 5a, and 5 are observed in tRNA preparations from most mammalian tissues with insignificant variations from tissue to tissue. In contrast, tRNA Lys4 is present in greater amounts in growing cells than in resting cells (Ortwerth and Liu 1973; Juarez et al. 1975). Variations in amounts of tRNA Lys4 are correlated with the ability of cells to divide, and the isoacceptor was proposed as a requirement for cell division (Ortwerth 1971). It is not detectable in permanently differentiated tissues. The level of tRNA Lys4 is directly related to the doubling time of cells and drops sharply just prior to confluency (Conlon-Hollingshead and Ortwerth 1980; Katze 1975; Ortwerth 1971). Isoacceptors 2b, 3, 4a, 4b, and 5b are not observed routinely, either because of their presence in small amounts and cochromatography with other isoacceptors or because they occur only in certain tissues. tRNA Lys4a is not shown in the profile, but it elutes with tRNA Lys4 . tRNA Lys6 occurs in some cell lines transformed by viruses; polyoma-virus-transformed 3T3 and Balb/3T3 (Jacobson et al. 1974), murine sarcoma virus transformed Balb/3T3 (Hedgcoth et al. 1980a, b), and Rous-sarcoma-virus-transformed NRK (C. Hedgcoth, K. Scheets, and S. Allen, unpublished results). This isoacceptor has also been observed in some cell lines not known to be transformed by viruses (Chu-Der and Ortwerth 1980).

This work was supported by grants CA12741 (to C.H.) and CA26423 (to B.J.O.) from the National Cancer Institute, HHS, the Eye Research Foundation of Missouri, Inc., and the Kansas Agricultural Experiment Station

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Py3T3:

polyoma-virus-transformed 3T3 mouse fibroblasts

TMV:

tobacco mosaic virus

KA31:

murine-sarcoma-virus-transformed Balb/3T3 mouse fibroblasts

BD cellulose:

benzoylated DEAE cellulose

pm7G:

N-7-methylguanosine 5′-phosphate

pUm:

2′-O-methyluridine 5′-phosphate (and other nucleoside 5′-phosphates are indicated similarly as pN)

s2mcm5U:

2-thio-5-methylcarboxymethyluridine

t6A:

N-[9-(ß-D-ribofuranosylpurin-6-yl)carbamoyl] threonine

ms2t6A:

the 2-methylthio derivative of t6A

A260 unit:

the amount of tRNA in 1 ml aqueous solution that gives an absorbance of 1 for a 1-cm light path and is about 40 µg tRNA when measured in water

SDS:

sodium dodecylsulfate

PEI cellulose:

polyethyleneimine-im-pregnated cellulose

References

  • Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282:189–194

    Article  PubMed  CAS  Google Scholar 

  • Bjercke RJ, Hedgcoth C (1981) Codon binding and translational properties of an isoaccepting lysine tRNA peculiar to virus-transformed cells. MGG 183: 528–531

    PubMed  CAS  Google Scholar 

  • Carbon JA, Hung L, Jones DS (1965) A reversible oxidative inactivation of specific transfer RNA species. Proc Natl Acad Sci USA 53:979–986

    Article  PubMed  CAS  Google Scholar 

  • Chu-Der OMY, Ortwerth BJ (1980) Lys-tRNA4 and cell division. Changes in lys-tRNA during the growth of mouse LM cells. Exp Cell Res 128: 159–170

    CAS  Google Scholar 

  • Conlon-Hollingshead C, Ortwerth BJ (1980) Lys-tRNA4 levels and cell division in mouse 3T3 cells. Exp Cell Res 128: 171–180

    Article  PubMed  CAS  Google Scholar 

  • Donis-Keller H, Maxam AM, Gilbert W (1977) Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res 8:2527–2538

    Article  Google Scholar 

  • Gauss DH, Sprinzl M (1981) Compilation of tRNA sequences. Nucleic Acids Res 9: rl-r22

    Google Scholar 

  • Gupta RC, Randerath K (1979) Rapid print-readout technique for sequencing RNAs containing modified nucleotides. Nucleic Acids Res 6:3443–3458

    Article  PubMed  CAS  Google Scholar 

  • Hedgcoth C, Thomas K, Scheets K, Allen S (1980a) Differences in aminoacylation in vivo and in vitro of lysine isoaccepting tRNAs from virus-transformed cells. Biochem Biophys Res Commun 95: 880–886

    Article  Google Scholar 

  • Hedgcoth C, Thomas K, Allen S, Scheets K (1980b) Differences in mitochondrial lysine tRNAs from normal and virus-transformed cells. Fed Proc 39: 2024

    Google Scholar 

  • Jacobson EL, Juarez H, Hedgcoth C, Consigli RA (1974) An extra species of lysine transfer ribonucleic acid in polyoma virus-transformed cells in tissue culture. Arch Biochem Biophys 163:666–670

    Article  PubMed  CAS  Google Scholar 

  • Juarez H, Juarez D, Hedgcoth C, Ortwerth BJ (1975) Amounts of isoaccepting lysine tRNAs change with the proliferative state of cells. Nature 254:359–360

    Article  PubMed  CAS  Google Scholar 

  • Katze JR (1975) Relation of cell type and cell density to the degree of post-transcriptional modification of tRNALys and tRNAPhe. Biochim Biophys Acta 407:392–398

    PubMed  CAS  Google Scholar 

  • Levy CC, Karpetsky TP (1980) The purification and properties of chicken liver RNase. An enzyme which is useful in distinguishing between cytidylic and uridylic acid residues. J Biol Chem 255: 2153–2159

    CAS  Google Scholar 

  • Liu LP, Ortwerth BJ (1972) Specificity of rat liver lysine transfer ribonucleic acid for codon recognition. Biochemistry 11: 12–17

    Article  PubMed  CAS  Google Scholar 

  • Malkin LI (1971) Minor species of ribonucleic acid associated with rat liver mitochondria. Biochemistry 10:4752–4756

    Article  PubMed  CAS  Google Scholar 

  • Marcu K, Dudock B (1974) Characterization of a highly efficient protein synthesizing system derived from commercial wheat germ. Nucleic Acids Res 1: 1385–1397

    Article  PubMed  CAS  Google Scholar 

  • Marcu K, Dudock B (1976) Effect of ribothymidine in specific eukaryotic tRNAs on their efficiency in in vitro protein synthesis. Nature 261: 159–162

    Article  PubMed  CAS  Google Scholar 

  • Marcus A (1972) Protein synthesis in extracts of wheat embryo. In: Last JA, Laskin AL (eds) Protein biosynthesis in nonbacterial systems. Dekker, New York, pp 127–145

    Google Scholar 

  • Martin RP, Schneller J-M, Stahl AJC, Dirheimer G (1979) Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria. Biochemistry 18:4600–4605

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg M, Leder P (1964) RNA code words and protein synthesis. Science 145:1399–1407

    Article  PubMed  CAS  Google Scholar 

  • Ortwerth BJ (1971) Isoaccepting transfer-ribonucleic acid in specialized mammalian tissue. Biochemistry 10:4190–4197

    Article  PubMed  CAS  Google Scholar 

  • Ortwerth BJ, Liu (1973) Correlation between a specific isoaccepting lysyltransfer ribonucleic acid and cell division in mammalian tissue. Biochemistry 12:3978–3984

    Article  PubMed  CAS  Google Scholar 

  • Ortwerth BJ, Carlson JV (1977) Lysine transfer RNA from liver: A sulfur-containing species that codes for AAG. Arch Biochem Biophys 178: 278–284

    Article  PubMed  CAS  Google Scholar 

  • Ortwerth BJ, Yonuschot GR, Carlson JV (1973) Properties of tRNA4Lys from various tissues. Biochemistry 12:3985–3991

    Article  PubMed  CAS  Google Scholar 

  • Peattie DA (1979) Sequencing RNA by a chemical method. Proc Natl Acad Sci USA 76:1760–1764

    Article  PubMed  CAS  Google Scholar 

  • Raba M, Limburg K, Burghagen M, Katze JR, Simsek M, Heckman J, RajBhandary UL, Gross HJ (1979) Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts. Eur J Biochem 97: 305–318

    Article  PubMed  CAS  Google Scholar 

  • Rudloff E, Hilse K (1971) Properties of isoaccepting species of lysine tRNA from rabbit reticulocytes in codbn recognition and in haemoglobin biosynthesis in vitro. Eur J Biochem 24:313–320

    Article  PubMed  CAS  Google Scholar 

  • Schnaitman C, Greenawalt JW (1968) Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol 38: 150–175

    Article  Google Scholar 

  • Sharma OK, Roberts WK, Beezley DN, Borek E (1975) A transfer RNA-dependent protein synthesizing system from Ehrlich ascites extracts. Biochim Biophys Acta 390: 327–331

    PubMed  CAS  Google Scholar 

  • Sibler A-P, Bordonne R, Dirheimer G, Martin R (1980) Structure primaire d’un trypto-phane-tRNA de mitochondrie de Levure capable de traduire le codon de terminaison U-G-A. C R Acad Sci [D] (Paris) 290:695–698

    CAS  Google Scholar 

  • Silberklang M, Gillum AM, RajBhandary UL (1979) Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol 59: 58–109

    Article  PubMed  CAS  Google Scholar 

  • Stanley J, Vassilenko S (1978) A different approach to RNA sequencing. Nature 274:87–89

    Article  PubMed  CAS  Google Scholar 

  • Wittig B, Reuter S, Gottschling H (1973) Purification of the four lysine-specific transfer ribonucleic acids from chick embryos. Biochim Biophys Acta 331: 221–230

    PubMed  CAS  Google Scholar 

  • Young IG, Anderson S (1980) The genetic code in bovine mitochondria: sequence of genes for the cytochrome oxidase subunit II and two tRNAs. Gene 12:257–265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin • Heidelberg

About this chapter

Cite this chapter

Hedgcoth, C. et al. (1983). Perturbation of the Mitochondrial Lysine tRNA Population by Virus-Induced Transformation or Stress of Mammalian Cells: Functional Properties and Nucleotide Sequence of a Mitochondrially Associated Lysine tRNA. In: Nass, G. (eds) Modified Nucleosides and Cancer. Recent Results in Cancer Research/Fortschritte der Krebsforschung/Progrès dans les recherches sur Ie cancer, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81947-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81947-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81949-0

  • Online ISBN: 978-3-642-81947-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics