Skip to main content

Effects of Phenology, Physiology, and Gradients in Community Composition, Structure, and Microclimate on Tundra Ecosystem CO2 Exchange

  • Chapter
Book cover Ecophysiology of Photosynthesis

Part of the book series: Springer Study Edition ((SSE,volume 100))

Abstract

Recently, attention among scientists has been focused on potential global climate change as well as on the deposition of pollutants and their impacts. These perspectives emphasize the role of ecosystems as exchange surfaces between atmosphere and vegetation and between vegetation and groundwater (Dickenson 1988; Bolin 1988; Ulrich 1987). Particularly with respect to northern taiga and tundra regions, it is important to determine whether climate change may have already altered or may in the future alter rates (positive or negative) of ecosystem carbon storage (Oberbauer et al. 1992; Oechel and Billings 1992). Furthermore, it is important to understand environmental controls on carbon fluxes and carbon storage, because the gradients in soil temperature, water availability, and available light energy in the Arctic are large and these will strongly affect the integrated values of net carbon dioxide (Tenhunen et al. 1992) and methane exchange (Whalen and Reeburgh 1988, 1990) in polar regions. Even when viewed simplistically and at the regional scale, temporal and spatial variation in ecosystem material exchange characteristics must be considered when estimating carbon balances (Miller et al. 1983). At smaller scales such as the watershed, temporal and spatial variation in ecosystem structure, species composition, physiology, and environmental conditions determine momentary net gas exchange rates, but also provide clues concerning the manner in which ecosystem properties may be shifted regionally in a future climate (Chapin et al. 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Binggins I (ed) Progress in photosynthesis research, vol IV.5. Proc VII Int Photosynthesis Congr. Nijhoff, Dorrdrecht, pp 221–224

    Google Scholar 

  2. Berg A, Kjelvik S, Wielgolaski FE (1975) Measurement of leaf areas and leaf angles of plants at Hardangervidda, Norway. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems. Part 1. Plants and microorganisms. Ecological Studies 16. Springer, Berlin Heidelberg New York, pp 279–286

    Google Scholar 

  3. Billings WD, Luken JO, Mortenson DA, Peterson KM (1982) Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53: 7–11

    Article  Google Scholar 

  4. Billings WD, Luken JO, Mortenson DA, Peterson KM (1983) Increasing atmospheric carbon dioxide: possible effects on arctic tundra. Oecologia 58: 286–289

    Article  Google Scholar 

  5. Bolin B (1988) Linking terrestrial ecosystem process models to climate models. In: Rosswall T, Woodmansee RG, Risser PG (eds) Scales and global change. John Wiley and Sons, New York, pp 109–124

    Google Scholar 

  6. Caldwell MM, Meister HP, Tenhunen JD, Lange OL (1986) Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portuguese macchia: measurements in different canopy layers and simulations with a canopy model. Trees 1: 25–41

    Article  Google Scholar 

  7. Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) (1992) Arctic ecosystems in a changing climate. Academic Press, New York, 469 pp

    Google Scholar 

  8. Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 229–289

    Chapter  Google Scholar 

  9. Coyne PI, Kelley JJ (1978) Meteorological assessment of CO2 exchange over an Alaskan arctic tundra. In: Tieszen LL (ed) Vegetation and production ecology of an Alaskan arctic tundra. Ecological Studies 19. Springer, Berlin Heidelberg New York, pp 299–319

    Chapter  Google Scholar 

  10. Dickenson (1988) Atmospheric systems and global change. In: Rosswall T, Woodmansee RG, Risser PG (eds), Scales and global change. Wiley, New York, pp 57–80

    Google Scholar 

  11. Eckardt FE, Heerfordt L, Jørgenson HM, Vaag P (1982) Photosynthetic production in Greenland as related to climate, plant cover, and grazing pressure. Photosynthetica 16: 71–100

    Google Scholar 

  12. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    Article  CAS  Google Scholar 

  13. Gillespie CT, Oberbauer SF, Gebauer R, Sala A, Tenhunen JD (1993) Climate effects on ecosystem carbon balance of tussock tundra in the Philip Smith Mountains, Alaska (in prep.)

    Google Scholar 

  14. Grulke NE, Riechers GH, Oechel WC, Hjelm U, Jaeger C (1990) Carbon balance in tussock tundra under ambient and elevated atmospheric CO2. Oecologia 83: 485–494

    Article  Google Scholar 

  15. Hahn S (1991) Photosynthese und Wasserhaushalt von Flechten in der Tundra Alaskas: Gaswechselmessungen unter natürlichen Bedingungen und experimentelle Faktorenanalyse. PhD Thesis, University of Würzburg, 127 pp

    Google Scholar 

  16. Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ, Loomis RS (eds) Modeling crop photosynthesis — from biochemistry to canopy. ASA, Madison, Wisconsin, pp 17–39

    Google Scholar 

  17. Harley PC, Tenhunen JD, Murray KJ, Beyers J (1989) Irradiance and temperature effects on photosynthesis of tussock tundra Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79: 251–259

    Article  Google Scholar 

  18. Hastings SJ, Luchessa SA, Oechel WC, Tenhunen JD (1989) Standing biomass and production in water track drainages of the foothills of the Philip Smith Mountains, Alaska. Holarct Ecol 12: 304–311

    Google Scholar 

  19. Hilbert DW, Prudhomme TI, Oechel WC (1987) Response of tussock tundra to elevated carbon dioxide regimes: analysis of ecosystem CO2 flux through nonlinear modeling. Oecologia 72: 466–472

    Article  Google Scholar 

  20. Jarvis PG (1987) Water and carbon fluxes in ecosystems. In: Schulze E-D, Zwölfer H (eds) Potentials and limitations of ecosystem analysis. Ecological studies 61. Springer, Berlin Heidelberg New York, pp 50–67

    Chapter  Google Scholar 

  21. Johansson L-G, Linder S (1975) The seasonal pattern of photosynthesis of some vascular plants on a subarctic mire. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems, part 1. Plants and microorganisms. Ecological studies 16. Springer, Berlin Heidelberg New York, pp 194–200

    Google Scholar 

  22. Kjelvik S, Wielgolaski FE, Jahren A (1975) Photosynthesis and respiration of plants studied by field technique at Hardangervidda, Norway. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems, part 1. Plants and microorganisms. Ecological studies 16. Springer, Berlin Heidelberg New York, pp 184–193

    Google Scholar 

  23. Limbach WE, Oechel WC, Lowell W (1982) Photosynthetic and respiratory responses to temperature and light of three Alaskan tundra growth forms. Holarct Ecol 5: 150–157

    Google Scholar 

  24. Luken JO, Billings WD (1985) The influence of microtopographic heterogeneity on carbon dioxide efflux from a subarctic bog. Holarct Ecol 8: 306–312

    Google Scholar 

  25. Luken JO, Billings WD, Peterson KM (1985) Succession and biomass allocation as controlled by Sphagnum in an Alaskan peatland. Can J Bot 63: 1500–1507

    Article  Google Scholar 

  26. Miller PC, Webber PJ, Oechel WC, Tieszen LL (1980) Biophysical processes and primary production. In: Brown J, Miller PC, Tieszerr LL, Bunnell FL (eds) An arctic tundra ecosystem, the coastal tundra at Barrow, Alaska. Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania, pp 66–101

    Google Scholar 

  27. Miller PC, Kendall R, Oechel WC (1983) Simulating carbon accumulation in northern ecosystems. Simulation 40: 119–141

    Article  CAS  Google Scholar 

  28. Miller PC, Miller PM, Blake-Johnson M, Chapin.III FS, Everett KR, Hilbert DW, Kummerow J, Linkins AE, Marion GM, Oechel WC, Roberts SW, Stuart L (1984) Plant-soil processes in Eriophorum vaginatum tussock tundra in Alaska: a systems modeling approach. Ecol Monogr 54: 361–405

    Article  CAS  Google Scholar 

  29. Murray KJ, Harley PC, Beyers J, Walz H, Tenhunen JD (1989a) Water content effects on photosynthetic response of Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79: 224–250

    Article  Google Scholar 

  30. Murray KJ, Tenhunen JD, Kummerow J (1989b) Limitations on moss growth and net primary production in tussock tundra areas of the foothills of the Philip Smith Mountains, Alaska. Oecologia 80: 256–262

    Google Scholar 

  31. Murray KJ, Tenhunen JD, Nowak RS (1993) Photoinhibition as a control on photosynthesis and production of Sphagnum mosses, Oecologia (in press)

    Google Scholar 

  32. Oberbauer SF, Tenhunen JD, Reynolds JF (1991) Environmental effects on CO2 efflux from water track and tussock tundra in arctic, Alaska, USA Arct Alp Res 23: 162–169

    Article  Google Scholar 

  33. Oberbauer SF, Gillespie CT, Cheng W, Gebauer R, Sala Serra A, Tenhunen JD (1992) Environmental effects on CO2 efflux from riparian tundra in the northern foothills of the Brooks Range, Alaska, USA. Oecologia 92: 568–577

    Article  Google Scholar 

  34. Oechel WC, Billings WD (1992) Effects of global change on the carbon balance of arctic plants and ecosystems. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) Arctic ecosystems in a changing climate. Academic Press, New York, pp 139–168

    Google Scholar 

  35. Oechel WC, Riechers G, Lawrence WT, Prudhomme TI, Grulke N, Hastings SJ (1992) CO2 LT’ an automated, null-balance system for studying the effects of elevated CO2 and global climate change on unmanaged ecosystems. Funct Ecol 6: 86–100

    Article  Google Scholar 

  36. Ostendorf B, Reynolds JF (1993) Relationships between a terrain-based hydrologic model and patch-scale vegetation pattern in an Arctic tundra landscape. Landscape Ecology (in press)

    Google Scholar 

  37. Rathstetter EB, King AW, Cosby BJ, Hornberger GM, O’Neill RV, Hobbie JE (1992) Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems. Ecol Appl 2: 55–70

    Article  Google Scholar 

  38. Reynolds JF, Leadley PW (1992) Modeling the response of arctic plants to changing climate. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) Arctic ecosystems in a changing climate. Academic Press, New York, pp 413–438

    Google Scholar 

  39. Reynolds JF, Dougherty RL, Tenhunen JD, Harley PC (1988) PRECO: plant response to elevated CO2 Simulation Model, parts I—III. Report #042, Response of Vegetation to carbon dioxide series, Carbon Dioxide Research Division. US Department of Energy, Washington, DC, 102 pp

    Google Scholar 

  40. Semikhatova OA, Gerasimenko TV, Ivanova TI (1992) Photosynthesis, respiration, and growth of plants in the Soviet arctic. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) Arctic ecosystems in a changing climate. Academic Press, New York, pp 169–192

    Google Scholar 

  41. Siegwolf R (1987) CO2-Gaswechsel von Rhododendron ferrugineum L. im Jahresgang an der alpinen Waldgrenze. PhD Thesis, University of Innsbruck, 283 pp

    Google Scholar 

  42. Smith E (1937) The influence of light and carbon dioxide on photosynthesis. Gen Physiol 20: 807–830

    Article  CAS  Google Scholar 

  43. Stocker O (1931) Transpiration und Wasserhaushalt in verschiedenen Klimazonen. I. Untersuchungen an der arktischen Baumgrenze in Schwedisch-Lappland. Jahrb Wiss Bot 75: 494–549

    Google Scholar 

  44. Stow D, Burns B, Hope AS (1989) Mapping arctic tundra vegetation using digital SPOT/HRV-XS data: a preliminary assesment. Int J Remote Sens 10: 1451–1457

    Article  Google Scholar 

  45. Tenhunen JD, Sala Serra A, Harley PC, Dougherty RL, Reynolds JF (1990) Factors influencing carbon fixation and water use by mediterranean sclerophyll shrubs during summer drought. Oecologia 82: 381–393

    Article  Google Scholar 

  46. Tenhunen JD, Lange OL, Hahn S, Siegwolf R, Oberbauer SF (1992) The ecosystem role of poikilohydric tundra plants. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) Arctic ecosystems in a changing climate. Academic Press, New York, pp 213–237

    Google Scholar 

  47. Ulrich B (1987) Stability, elasticity, and resilience of terrestrial ecosystems with respect to matter balance. In: Schulze E-D, Zwölfer H (eds) Potentials and limitations of ecosystem analysis. Ecological sudies 61. Springer, Berlin Heidelberg New York, pp 11–49

    Chapter  Google Scholar 

  48. Walker DA, Binnian E, Evans BM, Lederer ND, Nordstrand E, Webber PJ (1989) Terrain, vegetation, and landscape evolution of the R4D research site, Brooks Range foothills, Alaska. Holarct Ecol 12: 238–261

    Google Scholar 

  49. Whalen SC, Reeburgh WS (1988) A methane flux time series for tundra environments. Global Biogeochem Cycles 2: 399–409

    Article  CAS  Google Scholar 

  50. Whalen SC, Reeburgh WS (1990) A methane flux transect along the trans-Alaska pipeline haul road. Tellus 42B: 237–249

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tenhunen, J.D., Siegwolf, R.T.W., Oberbauer, S.F. (1995). Effects of Phenology, Physiology, and Gradients in Community Composition, Structure, and Microclimate on Tundra Ecosystem CO2 Exchange. In: Schulze, ED., Caldwell, M.M. (eds) Ecophysiology of Photosynthesis. Springer Study Edition, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79354-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79354-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58571-8

  • Online ISBN: 978-3-642-79354-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics