Skip to main content

Taxonomic Distribution of Crassulacean Acid Metabolism

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 114))

Abstract

The list presented in Table 26.1 summarizes the available information on the taxonomic occurrence of the CAM pathway. Details of the methods used to detect CAM activity can be found in the original publications: these have included nocturnal increases in malic-acid content, nocturnal CO2 uptake, or carbon-isotope composition (see p. 5). The latter has been particularly useful in taxonomic surveys, since it can be applied to dried plant material from herbarium collections, and modern mass spectrometers can provide adequate signals from as little as 1 mg of plant dry matter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avadhani PN, Goh CJ, Rao AN, Arditti J (1982) Carbon fixation in orchids. In: Arditti J (ed) Orchid biology, reviews and perspectives, vol II. Cornell University Press, Ithaca, pp 173–193

    Google Scholar 

  • Carter JP, Martin CE (1994) The occurrence of crassulacean acid metabolism among epiphytes in a high-rainfall region of Costa Rica. Selbyana 15: 104–106

    Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, and 39 others (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80: 528–580

    Article  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of the monocotyledons. Structure, evolution, and taxonomy. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • De Luca P, Alfani A, Virzo De Santo A (1977) CAM, transpiration, and adaptive mechanisms to xeric environments in the succulent Cucurbitaceae. Bot Gaz 138: 474–478

    Article  Google Scholar 

  • Dittrich P, Huber W (1974) Carbon dioxide metabolism in members of the Chlamydospermae. In: Avron M (ed) Proc 3rd Int Congr Photosynthesis. Elsevier, Amsterdam, pp 1573–1578

    Google Scholar 

  • Dittrich P, Campbell WH, Black CC Jr (1973) Phosphoenolpyruvate carboxykinase in plants exhibiting crassulacean acid metabolism. Plant Physiol 52: 357–361

    Article  PubMed  CAS  Google Scholar 

  • Dressier RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge

    Google Scholar 

  • Eickmeier WG (1978) Photosynthetic pathway distributions along an aridity gradient in Big Bend National Park, and implications for enhanced resource partitioning. Photosynthetica 12: 290–297

    CAS  Google Scholar 

  • Flach BMT, Eller BM (1994) Diurnal pattern of transpiration, water uptake and water budget of succulents with different CO2 fixation pathways. Bot Acta 107: 46–53

    Google Scholar 

  • Foster AS, Gifford EM Jr (1974) Comparative morphology of vascular plants, 2nd edn. WH Freeman, San Francisco

    Google Scholar 

  • Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge

    Google Scholar 

  • Goh CJ, Kluge M (1989) Gas exchange and water relations in epiphytic orchids. In: Lüttge U (ed) Vascular plants as epiphytes: evolution and ecophysiology. Springer, Berlin Heidelberg New York, pp 139–166

    Google Scholar 

  • Guralnick LJ, Ting IP, Lord EM (1986) Crassulacean acid metabolism in the Gesneriaceae. Am J Bot 73: 336–345

    Article  CAS  Google Scholar 

  • Holthe PA, Patel A, Ting IP (1992) The occurrence of CAM in Peperomia. Selbyana 13: 77–87

    Google Scholar 

  • Kluge M (1977) Is Sedum acre L. a CAM plant? Oecologia 29: 77–83

    Article  Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Kluge M, Avadhani PN, Goh CJ (1989) Gas exchange and water relations in epiphytes and tropical ferns. In: Lüttge U (ed) Vascular plants as epiphytes: evolution and ecophysiology. Springer, Berlin Heidelberg New York, pp 87–108

    Google Scholar 

  • Koch K, Kennedy RA (1980) Characteristics of crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. Plant Physiol 65: 193–197

    Article  PubMed  CAS  Google Scholar 

  • Kress WJ (1989) The systematic distribution of vascular epiphytes. In: Lüttge U (ed) Vascular plants as epiphytes: evolution and ecophysiology. Springer, Berlin Heidelberg New York, pp 234–261

    Google Scholar 

  • Ku SB, Shieh YJ, Reger BJ, Black CC (1981) Photosynthetic characteristics of Portulaca grandiflora, a succulent C4 dicot. Plant Physiol 68: 1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Kubitzki K (ed) (1990) The families and genera of vascular plants, vol I. Kramer KU, Green PS (eds) Pteridophytes and gymnosperms. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kubitzki K (ed) (1993) The families and genera of vascular plants, vol II. Kubitzki K, Rohwer JG, Bittrich V (eds) Flowering plants: dicotyledons, magnoliid, hamamelid and caryophyllid families. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lange OL, Zuber M (1977) Frerea indica, a stem succulent CAM plant with deciduous C3 leaves. Oecologia 31: 67–72

    Article  Google Scholar 

  • Lange OL, Schulze ED, Kappen L, Evenari M, Buschbom U (1975) CO2 exchange pattern under natural conditions of Caralluma negevensis, a CAM plant of the Negev desert. Photosynthetica 9: 318–326

    Google Scholar 

  • Mabberley DJ (1987) The plant-book. Cambridge University Press, Cambridge

    Google Scholar 

  • Martin CE (1994) Physiological ecology of the Bromeliaceae. Bot Rev 60: 1–82

    Article  Google Scholar 

  • Martin CE, Gravatt DA, Loeschen VS (1994) Crassulacean acid metabolism in three species of Commelinaceae. Ann Bot 74: 457–463

    Article  CAS  Google Scholar 

  • Martin CE, Loeschen VS, Coke LB (1990) Crassulacean acid metabolism in selected terrestrial succulents in southeastern Jamaica, including two species in the Commelinaceae. Oecologia 84: 99–102

    Article  Google Scholar 

  • McWilliams EL (1970) Comparative rates of dark CO2 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae. Bot Gaz 131: 285–290

    Article  Google Scholar 

  • Medina E, Delgado M, Troughton JH, Medina JD (1977) Physiological ecology of CO2 fixation in Bromeliaceae. Flora 166: 137–152

    CAS  Google Scholar 

  • Milburn TR, Pearson DJ, Ndegwe NA (1968) Crassulacean acid metabolism under natural tropical conditions. New Phytol 67: 883–897

    Article  CAS  Google Scholar 

  • Mooney H, Troughton JH, Berry JA (1974) Arid climates and photosynthetic systems. Carnegie Inst Washington Year book 73: 793–805

    Google Scholar 

  • Mooney HA, Troughton JH, Berry JA (1977) Carbon isotope ratio measurements of succulent plants in southern Africa. Oecologia 30: 295–305

    Article  Google Scholar 

  • Nobel PS (1988) Environmental biology of agaves and cacti. Cambridge University Press, Cambridge

    Google Scholar 

  • Nuernbergk EL (1961) Endogener Rhythmus und CO2 Stoffwechsel bei Pflanzen mit diurnalem Säurerhythmus. Planta 56: 28–70

    Article  CAS  Google Scholar 

  • Ravetta DA, McLaughlin SP (1993) Photosynthetic pathways of Hesperaloe funifera and H. nocturna (Agavaceae): novel sources of specialty fibers. Am J Bot 80: 524–532

    Article  Google Scholar 

  • Reddy AR, Das VSR (1978) The decarboxylating systems in fourteen taxa exhibiting CAM pathway. Z Pflanzenphysiol 86: 141–146

    CAS  Google Scholar 

  • Schulze E-D, Ziegler H, Stichler W (1976) Environmental control of crassulacean acid metabolism in Welwitschia mirabilis Hook. fil. in its range of natural distribution in the Namib desert. Oecologia 24: 323–334

    Article  Google Scholar 

  • Schütte KH, Steyn R, Van der Westhuizen M (1967) Crassulacean acid metabolism in South African succulents: a preliminary investigation into its occurrence in various families. J South Afr Bot 33: 107–110

    Google Scholar 

  • Smith JAC (1989) Epiphytic bromeliads. In: Lüttge U (ed) Vascular plants as epiphytes: evolution and ecophysiology. Springer, Berlin Heidelberg New York, pp 109–138

    Google Scholar 

  • Smith JAC, Griffiths H, Bassett M, Griffiths NM (1985) Day-night changes in the leaf water relations of epiphytic bromeliads in the rain forests of Trinidad. Oecologia 67: 475–485

    Article  Google Scholar 

  • Teeri J (1982) Photosynthetic variation in the Crassulaceae. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 92–111

    Google Scholar 

  • Thorne RF (1992) Classification and geography of the flowering plants. Bot Rev 58: 225–348

    Article  Google Scholar 

  • Ting IP, Burk JH (1983) Aspects of carbon metabolism in Welwitschia. Plant Sci Lett 32: 279–285

    Article  CAS  Google Scholar 

  • Ting IP, Hanscom III Z (1977) Induction of acid metabolism in Portulacaria afra. Plant Physiol 59: 511–514

    Article  PubMed  CAS  Google Scholar 

  • Troughton JH, Card KA, Hendy CH (1974) Photosynthetic pathways and carbon isotope discrimination by plants. Carnegie Inst Washington Year book 73: 768–780

    Google Scholar 

  • Tryon RM, Tryon AF (1982) Ferns and allied plants. Springer, New York

    Book  Google Scholar 

  • Virzo De Santo A, Fioretto A, Alfani A (1981–1982) The adaptive significance of growth form, leaf morphology, and CAM in the genus Sansevieria. Delpinoa N.S. 23–24: 307–323

    Google Scholar 

  • von Willert DJ (1985) Welwitschia mirabilis - new aspects in the biology of an old plant. Adv Bot Res 11: 157–191

    Article  Google Scholar 

  • von Willert DJ, Thomas DA, Lobin W, Curdts E (1977) Ecophysiologic investigations in the family of the Mesembryanthemaceae. Occurrence of a CAM and ion content. Oecologia 29: 67–76

    Article  Google Scholar 

  • von Willert DJ, Brinckmann E, Scheitler B, Schulze ED, Thomas DA, Treichel S (1980) Ökophysiologische Untersuchungen an Pflanzen der Namib-Wüste. Naturwissenschaften 67: 21–28

    Article  Google Scholar 

  • von Willert DJ, Eller BM, Werger MJA, Brinckmann E, Ihlenfeldt HD (1992) Life strategies of succulent plants in deserts, with special reference to the Namib desert. Cambridge University Press, Cambridge

    Google Scholar 

  • Webb DR, Rattray MR, Brown JMA (1988) A preliminary survey for crassulacean acid metabolism (CAM) in submerged aquatic macrophytes in New Zealand. N Z J Mar Freshw Res 22: 231–235

    Article  CAS  Google Scholar 

  • Webster GL (1987) The saga of the spurges: a review of classification and relationships in the Euphorbiales. Bot J Linn Soc 94: 3–46

    Article  Google Scholar 

  • Webster GL (1994) Synopsis of the genera and suprageneric taxa of Euphorbiaceae. Ann Mo Bot Gard 81: 33–144

    Article  Google Scholar 

  • Winter K (1973) NaCl-induzierter Crassulaceensäurestoffwechsel bei einer weiteren Aizoacee: Carpobrotus edulis. Planta 115: 187–188

    Article  CAS  Google Scholar 

  • Winter K (1979) δ 13C values of some succulent plants from Madagascar. Oecologia 40: 103–112

    Article  Google Scholar 

  • Winter K, Schramm MJ (1986) Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchange in leaves of Welwitschia mirabilis. Plant Physiol 82: 173–178

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Osmond CB, Pate JS (1981) Coping with salinity. In: Pate JS, McComb AJ (eds) The biology of Australian plants. University of Western Australia Press, Nedlands, pp 88–113

    Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57: 129–141

    Article  Google Scholar 

  • Ziegler H, Batanouny KH, Sankhla N, Vyas OP, Stichler W (1981) The photosynthetic pathway types of some desert plants from India, Saudi Arabia, Egypt, and Iraq. Oecologia 48: 93–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, J.A.C., Winter, K. (1996). Taxonomic Distribution of Crassulacean Acid Metabolism. In: Winter, K., Smith, J.A.C. (eds) Crassulacean Acid Metabolism. Ecological Studies, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79060-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79060-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79062-1

  • Online ISBN: 978-3-642-79060-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics