Skip to main content

Biphasic Positive Airway Pressure (BIPAP) — a New Mode of Assisted Spontaneous Breathing

  • Conference paper
Respiratorische Therapie nach operativen Eingriffen

Abstract

Biphasic positive airway pressure (BIPAP) is a new ventilatory support technique based on time-cycled switching between two levels of continuous positive airway pressure (CPAP) [1]. Therefore, BIPAP allows unrestricted spontaneous breathing throught pressure controlled time-cycled mechanical ventilation (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum M, Benzer H, Putensen C, Koller W, Putz G (1989) Biphasic positive airway pressure ( BIPAP) — eine neue Form der augmentierenden Beatmung. Anaesthesist 38: 452–458

    PubMed  CAS  Google Scholar 

  2. Putensen C, Putensen-Himmer G, León M (1992) Synchronization of the release during airway pressure release ventilation. Anesthesiology 77: A 1207

    Google Scholar 

  3. Luger TJ, Putensen C, Baum M, Schreithofer D, Morawetz R, Schlager A (1990) Entwöhnung eines Asthmatikers mit Biphasic positive airway pressure ( BIPAP) unter kontinuierlicher Fentanylgabe. Anaesthesist 39: 557–560

    PubMed  CAS  Google Scholar 

  4. Garner W, Downs JB, Stock MC (1988) Airway pressure release ventilation (APRV): a human trial. Chest 94: 779–781

    Article  PubMed  CAS  Google Scholar 

  5. Valentine DD, Hammond MD, Downs JB, Sears N, Sims W (1991) Distribution of ventilation and perfusion with different modes of mechanical ventilation. Am Rev Respir Dis 143: 1262–1266

    PubMed  CAS  Google Scholar 

  6. Cane RD, Peruzzi WT, Shapiro BA (1991) Airway pressure release ventilation in severe acute respiratory failure. Chest 100: 460–463

    Article  PubMed  CAS  Google Scholar 

  7. Räsänen J, Cane RD, Downs JB et al. (1991) Airway pressure release ventilation during acute lung injury: a prospective multicenter trial. Crit Care Med 19: 1234–1241

    Article  PubMed  Google Scholar 

  8. Heenan TJ, Downs JB, Douglas ME, Ruiz BC, Jumper L (1980) Intermittent mandatory ventilation. Is synchronization important. Chest 77: 598–602

    Article  PubMed  CAS  Google Scholar 

  9. Downs JB, Stock MC (1987) Airway pressure release ventilation: a new concept of ventilatory support. Crit Care Med 15: 459–461

    Article  PubMed  CAS  Google Scholar 

  10. Stock MC, Downs JB, Frohlicher DA (1987) Airway pressure release ventilation. Crit Care Med 15: 462–466

    Article  PubMed  CAS  Google Scholar 

  11. Räsänen J, Downs JB (1988) Airway pressure release ventilation. In: Vincent JL (ed) Update in intensive care and emergency medicine 5. Springer, Berlin Heidelberg New York, pp 772–775

    Google Scholar 

  12. Benzer H, Baum M, Hörmann C et al (1991) Biphasic positive airway pressure (BIPAP). In: Rügheimer (ed) New aspects on respiratory failure. Springer, Berlin Heidelberg New York, pp 265–271

    Google Scholar 

  13. Bishop B, Hirsch J, Thursby M (1979) Volume, flow, and timing of each breath during positive-pressure breathing in man. J Appl Physiol 45: 495–501

    Google Scholar 

  14. Baum M, Mutz N, Hörmann C (1993) Airway pressure release ventilation. In: Vincent JL (ed) Yearbook of intensive care and emergency medicine 1993. Springer, Berlin Heidelberg New York, pp 514–526

    Google Scholar 

  15. Putensen C, Putensen-Himmer G, León M (1993) Effect of the release time on gas exchange and hemodynamics during airway pressure release ventilation. Crit Care Med 21: S140

    Article  Google Scholar 

  16. Marini JJ, Crooke PS, Truwit JD (1989) Determinants and limits of pressure-preset ventilation: a mathematical model of pressure control. J Appl Physiol 67: 1081–1092

    PubMed  CAS  Google Scholar 

  17. Froese AB, Bryan AC (1974) Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41: 242–255

    Article  PubMed  CAS  Google Scholar 

  18. Rehder K, Knopp TJ, Sessler AD, Didier EP (1979) Ventilation-perfusion relationship in young healthy awake and anesthetized man. J Appl Physiol 47: 745–753

    PubMed  CAS  Google Scholar 

  19. Gea J, Roca J, Torres A, Agusti AGN, Wagner PD, Rodriguez-Roisin R (1991) Mechanism of abnormal gas exchange in patients with pneumonia. Anesthesiology 75: 782–789

    Article  PubMed  CAS  Google Scholar 

  20. Wagner PD, Saltzman HA, West JB (1974) Measurement of continuous distribution of ventilation-perfusion ratios: theory. J Appl Physiol 36: 588–599

    PubMed  CAS  Google Scholar 

  21. Wagner PD, Lavaruso RB, Uhl RR, West JB (1974) Continuous distribution of ventilation-perfusion ratios in normal subjects breathing air and 100% O2. J Clin Invest 54: 54–68

    Article  PubMed  CAS  Google Scholar 

  22. Wagner PD, Naumann PF, Lavaruso RB (1974) Simultaneous measurement of eight foreign gases in blood by gas chromatography. J Appl Physiol 36: 600–605

    PubMed  CAS  Google Scholar 

  23. Beydon L, Cinotti L, Rekik N, et al. (1991) Changes in distribution of ventilation and perfusion associated with separation from mechanical ventilation in patients with obstructive pulmonary disease. Anesthesiology 75: 730–738

    Article  PubMed  CAS  Google Scholar 

  24. Santak B, Radermacher P, Sandmann W, Falke KJ (1991) Influence of SIMV plus inspiratory pressure support an VA/O distributions during postoperative weaning. Intensive Care Med 75: 730–738

    Google Scholar 

  25. Nikki P, Räsänen J, Tahvanainen J, Mäkeläinen A (1982) Ventilatory pattern in respiratory failure arising from acute myocardial infarction. Respiratory and hemodynamic effects of IMV vs IPPV and PEEP0 vs PEEP10. Crit Care Med 10: 75–78

    Article  PubMed  CAS  Google Scholar 

  26. Räsänen J, Downs JB, Stock MC (1988) Cardiovascular effects of conventional positive pressure ventilation and airway pressure release ventilation. Chest 93: 911–915

    Article  PubMed  Google Scholar 

  27. Lynch JP, Mhyre JG, Dantzker DR (1979) Influence of cardiac output on intrapulmonary shunt. J Appl Physiol 46: 315–321

    PubMed  CAS  Google Scholar 

  28. Stock MC, Downs JB, Betts RK et al. (1988) Oxygen consumption during spontaneous breathing with acute lung injury in anesthetized pigs. Am Rev Respir Dis 46: 315–321

    Google Scholar 

  29. Räsänen J, Puhakka K, Leijala M (1992) Spontaneous breathing and total body oxygen consumption in children recovering from open heart surgery. Chest 101: 662–667

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Putensen, C., Lopez, F.A., Hörmann, C. (1995). Biphasic Positive Airway Pressure (BIPAP) — a New Mode of Assisted Spontaneous Breathing. In: Rügheimer, E. (eds) Respiratorische Therapie nach operativen Eingriffen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78399-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78399-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57047-9

  • Online ISBN: 978-3-642-78399-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics