Skip to main content

Hormonal Inhibition of Adenylyl Cyclase by αi and βγ, αi orβγ, αi and/or βγ

  • Chapter
  • 97 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

Abstract

All eukaryotic cells use heterotrimeric GTP-binding proteins, G-proteins, in their responses to extracellular signals. Our current understanding of the transduction processes mediated by these proteins began with the discovery that GTP regulates glucagon binding to its receptor (Rodbell et al. 1971b), and that the nucleotide is required for hormone stimulation of adenylyl cyclase (Rodbell et al. 1971a). Those observations led to the discovery of the family of G-proteins and their widespread involvement in many different signal transduction pathways (Birnbaumer 1990; Gilman 1984). The responses of cells to individual signals using G-proteins are probably complex and seem to depend upon a large number of factors related to the diversity of G-proteins within the cell and their mechanism(s) of activation. The identification of these mechanisms has often involved studies of receptor regulation of adenylyl cyclase activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birnbaumer L, Codina J, Mattera R, Cerione RA, Hildebrandt JD, Sunyer T, Rojas FJ, Caron MG, Lefkowitz RJ, Iyengar R (1985) Regulation of hormone receptors and adenylyl cyclases by guanine nucleotide binding N proteins. Recent Prog Horm Res 41:41–99.

    PubMed  CAS  Google Scholar 

  • Birnhaumer L (1987) Which G protein subunits are the active mediators in signal transduction. Trends Pharmacol Sci 8:209–211.

    Article  Google Scholar 

  • Birnbaumer L (1990) Transduction of receptor signal into modulation of effector activity by G proteins: the first 20 years or so. FASEB J 4:3178–3188.

    PubMed  CAS  Google Scholar 

  • Bokoch GM, Gilman AG (1984) Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin. Cell 39:301–308.

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM, Katada T, Northup JK, Ui M, Gilman AG (1984) Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. J Biol Chem 259:3560–3567.

    PubMed  CAS  Google Scholar 

  • Carty DJ, Padrell E, Codina J, Birnbaumer L, Hildebrandt JD, Iyengar R (1990) Distinct guanine nucleotide binding and release properties of the three Gi proteins. J Biol Chem 265:6268–6273.

    PubMed  CAS  Google Scholar 

  • Cerione RA, Staniszewski C, Caron MG, Lefkowitz RJ, Codina J, Birnbaumer L (1985) A role for Ni in the hormonal stimulation of adenylate cyclase. Nature 318:293–295.

    Article  PubMed  CAS  Google Scholar 

  • Codina J, Hildebrandt J, Iyengar R, Birnbaumer L, Sekura RD, Manclark CR (1983) Pertussis toxin substrate, the putative Ni component of adenylyl cyclase, is an alpha beta heterodimer regulated by guanine nucleotide and magnesium. J Biol Chem 80:4276–4280.

    CAS  Google Scholar 

  • Florio VA, Sternweis PC (1989) Mechanisms of muscarinic receptor action on Go in reconstituted phospholipid vesicles. J Biol Chem 264:3909–3915.

    PubMed  CAS  Google Scholar 

  • Fukada Y, Takao T, Ohguro H, Yoshizawa T, Akino T, Shimonishi Y (1990) Farnesylated gamma-subunit of photoreceptor G protein indispensable for GTP-binding. Nature 346:658–660.

    Article  PubMed  CAS  Google Scholar 

  • Fung BK, Hurley JB, Stryer L (1981) Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci USA 78:152–156.

    Article  PubMed  CAS  Google Scholar 

  • Fung BK (1983) Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. J Biol Chem 258:10495–10502.

    PubMed  CAS  Google Scholar 

  • Gilman AG (1984) G proteins and dual control of adenylate cyclase. Cell 36:577–579.

    Article  PubMed  CAS  Google Scholar 

  • Higashijima T, Ferguson KM, Sternweis PC, Smigel MD, Gilman AG (1987) Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem 262:762–766.

    PubMed  CAS  Google Scholar 

  • Hildebrandt JD, Kohnken RE (1990) Hormone inhibition of adenylyl cyclase. Differences in the mechanisms for inhibition by hormones and G protein beta/ gamma. J Biol Chem 265:9825–9830.

    PubMed  CAS  Google Scholar 

  • Hildebrandt JD, Hanoune J, Birnbaumer L (1982) Guanine nucleotide inhibition of cyc S49 mouse lymphoma cell membrane adenylyl cyclase. J Biol Chem 257:14723–14725.

    PubMed  CAS  Google Scholar 

  • Hildebrandt JD, Sekura RD, Codina J, Iyengar R, Manclark CR, Birnbaumer L (1983) Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins. Nature 302:706–709.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt JD, Codina J, Rosenthal W, Birnbaumer L, Neer EJ, Yamazaki A, Bitensky MW (1985a) Characterization by two-dimensional peptide mapping of the gamma subunits of Ns and Ni, the regulatory proteins of adenylyl cyclase, and of transducin, the guanine nucleotide-binding protein of rod outer segments of the eye. J Biol Chem 260:14867–14872.

    PubMed  CAS  Google Scholar 

  • Hildebrandt JD, Codina J, Rosenthal W, Sunyer T, Iyengar R, Birnbaumer L (1985b) Properties of human erythrocyte Ns and Ni, the regulatory components of adenylate cyclase, as purified without regulatory ligands. Adv Cyclic Nucleotide Protein Phosphorylation Res 19:87–101.

    PubMed  CAS  Google Scholar 

  • Jakobs KH, Aktories K, Schultz G (1983) A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells. Nature 303:177–178.

    Article  PubMed  CAS  Google Scholar 

  • Jelsema CL, Axelrod J (1987) Stimulation of phospholipase A2 activity in bovine rod outer segments by the beta/gamma subunits of transducin and its inhibition by the alpha subunit. Proc Natl Acad Sci USA 84:3623–3627.

    Article  PubMed  CAS  Google Scholar 

  • Kahn RA, Gilman AG (1984) ADP-ribosylation of Gs promotes the dissociation of its alpha and beta subunits. J Biol Chem 259:6235–6240.

    PubMed  CAS  Google Scholar 

  • Katada T, Bokoch GM, Smigel MD, Ui M, Gilman AG (1984) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc and wild type membranes. J Biol Chem 259:3586–3595.

    PubMed  CAS  Google Scholar 

  • Katada T, Kusakabe K, Oinuma M, Ui M (1987) A novel mechanism for the inhibition of adenylate cyclase via inhibitory GTP-binding proteins. Calmodulindependent inhibition of the cyclase catalyst by the beta gamma-subimits of GTP-binding proteins. J Biol Chem 262:11897–11900.

    PubMed  CAS  Google Scholar 

  • Kikuchi A, Kozawa O, Kaibuchi K, Katada T, Ui M, Takai Y (1986) Direct evidence for involvement of a guanine nucleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differentiated human leukemic (HL-60) cells. Reconstitution with Gi or Go of the plasma membranes ADP-ribosylated by pertussis toxin. J Biol Chem 261:11558–11562.

    PubMed  CAS  Google Scholar 

  • Kim D, Lewis DL, Graziadei L, Neer EJ, Bar Sagi D, Clapham DE (1989) G-protein beta gamma-subunits activate the cardiac muscarinic K+-channel via phospholipase A2. Nature 337:557–560.

    Article  PubMed  CAS  Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326.

    Article  PubMed  CAS  Google Scholar 

  • Manning DR, Gilman AG (1983) The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. J Biol Chem 258:7059–7063.

    PubMed  CAS  Google Scholar 

  • Murad F, Chi Y-M, Rall TW, Sutherland EW (1962) Adenyl cyclase III. The effect of catecholamines and choline esters on the formation of adenosine 3′-5′-phosphate by preparations of cardiac muscle and liver. J Biol Chem 237:1233–1238.

    PubMed  CAS  Google Scholar 

  • Northup JK, Smigel MD, Sternweis PC, Gilman AG (1983) The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45000-dalton (alpha) subunit. J Biol Chem 258:11369–11376.

    PubMed  CAS  Google Scholar 

  • Okabe K, Yatani A, Evans T, Ho YK, Codina J, Birnbaumer L, Brown AM (1990) Beta gamma dimers of G proteins inhibit atrial muscarinic K+ channels. J Biol Chem 265:12854–12858.

    PubMed  CAS  Google Scholar 

  • Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transcription. Nature 284:17–22.

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M, Birnbaume L, Pohl SL, Krans HMJ (1971a) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J Biol Chem 246:1877–1882.

    PubMed  CAS  Google Scholar 

  • Rodbell M, Krans HMJ, Pohl SL, Birnbaumer L (1971b) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanyl nucleotides on binding of 125I-glucagon. J Biol Chem 246:1872–1876.

    PubMed  CAS  Google Scholar 

  • Roof DJ, Applebury ML, Sternweis PC (1985) Relationships within the family of GTP-binding proteins isolated from bovine central nervous system. J Biol Chem 260:16242–16249.

    PubMed  CAS  Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of G-proteins in signal transduction. Science 252:802–808.

    Article  PubMed  CAS  Google Scholar 

  • Smigel MD (1986) Purification of the catalyst of adenylate cyclase. J Biol Chem 261:1976–1982.

    PubMed  CAS  Google Scholar 

  • Tang W, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G-protein beta/gamma subunits. Science 254:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Krupinski J, Gilman AG (1991) Expression and characterization of calmodulin-activated (type I) adenylycyclase. J Biol Chem 266:8595–8603.

    PubMed  CAS  Google Scholar 

  • Toro MJ, Montoya E, Birnbaumer L (1987) Inhibitory regulation of adenylyl cyclases. Evidence inconsistent with beta/gamma-complexes of Gi proteins mediating hormonal effects by interfering with activation of Gs. Mol Endocrinol 1:669–676.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Brown AM, Birnbaumer L (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein GK. Science 235:207–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hildebrandt, J.D. (1993). Hormonal Inhibition of Adenylyl Cyclase by αi and βγ, αi orβγ, αi and/or βγ. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics