Skip to main content

Neuere Erkenntnisse über die Rolle der DNA-Reparatur in der Entstehung von Hautkarzinomen

  • Conference paper
Onkologische Dermatologie

Part of the book series: Fortschritte der operativen und onkologischen Dermatologie ((OP.DERMATOLOGIE,volume 7))

  • 22 Accesses

Zusammenfassung

Zelluläre DNA ist ständig Mutagenen ausgesetzt. Die Fähigkeit einer Zelle DNA-Schäden wieder zu reparieren ist notwendig zur Aufrechterhaltung ihrer Funktionen und Verhinderung einer malignen Transformation. Bakterielle DNA-Reparaturmechanismen sind gut charakterisiert — über menschliche Zellen steht ein detailliertes Wissen noch aus. Der Zusammenhang zwischen Exposition mit dem Mutagen UV-Strahlung und Hautkarzinogenese ist gut etabliert. Dies wird besonders deutlich bei der autosomal rezessiv vererbten, DNA-Reparatur-Defekten, zu Hautmalignomen neigenden Erkrankung Xeroderma pigmentosum (XP). In letzter Zeit sind in den Bemühungen die XP Defekte zu charakterisieren große Fortschritte gemacht worden. Weitere Erkrankungen mit nachgewiesenen oder vermuteten DNA-Reparaturdefekten sind das Cockayne Syndrom, die Trichothiodystrophie, das Dysplastische Nävus Syndrom, die Chromosomenbruchsyndrome, das Werner Syndrom und das Basalzellnävussyndrom. Wir messen DNA-Reparatur mit Hilfe von Plasmid Vektoren. Dabei wird die Fähigkeit von Zellen gemessen verschiedenste DNA-Schäden auf transfizierter Plasmid DNA zu reparieren. Wir hoffen in Zukunft diese Assays für die Diagnostik von DNA-Reparaturdefekten anbieten zu können.

Summary

Cellular DNA is continuously exposed to mutagens. The ability of a cell to repair DNA damage is necessary to maintain its functions and to prevent malignant transformation. DNA repair mechanisms are well characterized in bacteria, but not in human cells. The connection between exposure to the mutagen UV light and skin carcinogenesis is well established and clearly demonstrated in the autosomal-recessive, DNA repair deficient, skin cancer-prone disorder xeroderma pigmentosum (XP). Recently, progress was made in characterizing the defects of XP. Further diseases with proven or suspected DNA repair defects are Cockayne syndrome, trichothiodystrophy, dysplastic nevus syndrome, chromosome breakage syndromes, Werner syndrome, and basal cell nevus syndrome. We are using plasmid vectors to measure DNA repair, assessing the ability of cells to repair different kinds of DNA damage on transfected plasmid DNA. In the future, we hope to offer these assays for the routine laboratory diagnosis of DNA repair defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Suarez HG, Daya-Grosjean L, Schlaifer D, Nardeux P, Renault G, Bos JL, Sarasin A (1989) Activated oncogenes in skin tumors from a repair deficient syndrome, xeroderma pigmentosum. Cancer Res 49: 1223–1228

    PubMed  CAS  Google Scholar 

  2. Albino AP, Nanus DM, Mentle IR, Cordon-Cardo C, McNutt NS, Bressler J, Andreeff M (1989) Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene 4: 1363–1374

    PubMed  CAS  Google Scholar 

  3. National Institutes of Health, Consensus Development (1989) Sunlight, ultraviolet radiation, and the skin. Conference statement, volume 7, number 8

    Google Scholar 

  4. Brash DE (1988) UV mutagenic photoproducts in Escherichia coli and human cells: a molecular genetics perspective on human skin cancer. Photochem Photobiol 48: 59–66

    Article  PubMed  CAS  Google Scholar 

  5. Mitchell DL (1988) The relative cytotoxicity of (6–4) photoproducts and cyclobutane dimers in mammalian cells. Photochem Photobiol 48: 51–57

    Article  PubMed  CAS  Google Scholar 

  6. Lundgren K, Wulf HC (1988) Cytotoxicity and genotoxicity of UVA irradiation in Chinese hamster ovary cells measured by specific locus mutations, sister chromatid exchanges and chromosome aberrations. Photochem Photobiol 47: 559–563

    Article  PubMed  CAS  Google Scholar 

  7. Kraemer KH, DiGiovanni JJ, Moshel AN, Tarone RE, Peck GL (1988) Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. N Engl J Med 318: 1633–1637

    Article  PubMed  CAS  Google Scholar 

  8. Kraemer KH, Lee MM, Scotto J (1987) Xeroderma pigmentosum (review article). Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 123: 241–250

    Article  PubMed  CAS  Google Scholar 

  9. Kraemer KH, Herlyn M, Yuspa S, Clark WH, Townsend GK, Neises G, Hearing V (1989) Reduced DNA repair in cultured melanocytes and nevus cells from a patient with xeroderma pigmentosum. Arch Dermatol 125: 263–268

    Article  PubMed  CAS  Google Scholar 

  10. Tanaka K, Miura N, Satokata I, Miyamoto I, Yoshida MC, Satoh Y, Kondo S, Yasui A, Okayama H, Okada Y (1990) Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature 348: 73–76

    Article  PubMed  CAS  Google Scholar 

  11. Patterson M, Chu G (1989) Evidence that xeroderma pigmentosum cells from complementation group E are deficient in a homolog of yeast photolyase. Mol Cell Biol 9: 5105–5112

    PubMed  CAS  Google Scholar 

  12. Weeda G, van Ham RC, Vermeulen W, Bootsma D, van der Eb AJ, Hoeijmakers JH (1990) A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockeyne’s syndrome. Cell 62: 777–791

    Article  PubMed  CAS  Google Scholar 

  13. Wood RD, Robins P, Lindahl T (1988) Complementation of the xeroderma pigmentosum DNA repair defect in cell free extracts. Cell 53: 97–106

    Article  PubMed  CAS  Google Scholar 

  14. Nuzzo F, Zei G, Stefanini M, Colognola R, Santachiara AS, Lagomarsini P, Marinoni S, Salvaneschi L (1990) Search for consanguinity within and among families of patients with trichothiodystrophy associated with xeroderma pigmentosum. J Med Genet 27: 21–25

    Article  PubMed  CAS  Google Scholar 

  15. Hanawalt PC (1991) Heterogeneity of DNA repair at the gene level. Mutat Res 247: 203–211

    PubMed  CAS  Google Scholar 

  16. Barrett SF, Robbins JH, Tarone RE, Kraemer KH (1991) Evidence for defective repair of cyclobutane dimers with normal repair of other DNA photoproducts in a transcriptionally active gene transfected into Cockayne syndrome cells. Mutation Res, in press

    Google Scholar 

  17. Perera MIR, Um KI, Greene MH, Wataers HL, Bredberg A, Kraemer KH (1986) Hereditary dysplastic nevus syndrome: lymphoid cell ultraviolet hypermutability in association with increased melanoma susceptibility. Cancer Res 46: 1005–1009

    PubMed  CAS  Google Scholar 

  18. Sanford KK, Tarone RE, Parshad R, Tucker M, Greene MH, Jones GM (1987) Hypersensitivity to G2 chromatid radiation damage in familial dysplastic nevus syndrome. Lancet 14: 1111–1116

    Article  Google Scholar 

  19. Willis AE, Weksberg R, Tomlinson S, Lindahl T (1987) Structural alterations of DNA ligase I in Bloom’s syndrome. Proc Natl Acad Sci USA 84: 8016–8020

    Article  PubMed  CAS  Google Scholar 

  20. Pero RW, Johnson DB, Markowitz M, Doyle G, Lund-Pero M, Seidegard J, Halper M, Miller DG (1989) DNA repair synthesis in individuals with and without a family history of cancer. Carcinogenesis 10: 693–697

    Article  PubMed  CAS  Google Scholar 

  21. Alcalay J, Freeman SE, Goldberg LH, Wolf JE (1990) Excision repair of pyrimidine dimers induced by simulated solar irradiation in the skin of patients with basal cell carcinoma. J Invest Dermatol 95: 506–509

    Article  PubMed  CAS  Google Scholar 

  22. Swift M, Reinauer PJ, Morrell D, Chase CL (1987) Breast and other cancers in families with ataxia-telangiectasia. New Engl J Med 316: 1289–1294

    Article  PubMed  CAS  Google Scholar 

  23. Rünger TM, Kraemer KH (1989) Joining of linear plasmid DNA is reduced and error-prone in Bloom’s syndrome cells. EMBO 8: 1419–1425

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rünger, T.M. (1992). Neuere Erkenntnisse über die Rolle der DNA-Reparatur in der Entstehung von Hautkarzinomen. In: Burg, G., Hartmann, A.A., Konz, B. (eds) Onkologische Dermatologie. Fortschritte der operativen und onkologischen Dermatologie, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77690-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77690-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77691-5

  • Online ISBN: 978-3-642-77690-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics