Skip to main content

Shock-Induced Disturbances in Cellular Metabolism and Membrane Function

  • Chapter
Der Schwerstverletzte

Zusammenfassung

Shock may be characterized as circulatory disturbance that lasts long enough and is severe enough to induce significant metabolic and functional cellular disturbances [14, 17]. The cellular response of the trauma patient to acute physical injury are, however, considerably more complex, as outlined in Fig. 1. At the site of injury the integrity of tissue cells is initially mainly endangered by direct mechanical trauma, while later systemic hypotension due to external and internal losses of body fluids will further impair tissue perfusion and oxygenation and enhance local cellular injury [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almskog BA, Haljamäe H, Hasseigren PO, Lund B, Decken A von der, Seeman T (1984) Effects of hypovolemia on local metabolic changes in skeletal muscle following high velocity missile injury. Circ Shock 12:253

    PubMed  CAS  Google Scholar 

  2. Amaral JF, Shearer JD, Mastrofrancesco B, Gann DS, Caldwell MD (1988) The temporal characteristics of metabolic and endocrine response to injury. J Trauma 28:1335

    Article  PubMed  CAS  Google Scholar 

  3. Barton RN (1985) Neuroendocrine mobilization of body fuels after injury. Br Med Bull 4:218

    Google Scholar 

  4. Bessey PQ, Brooks DC, Black PR, Aoki TT, Wilmore DW (1983) Ephinephrine acutely mediates skeletal muscle insulin resistance. Surgery 94:172

    PubMed  CAS  Google Scholar 

  5. Blum H, Schnall MD, Renshaw PF, Buzby GP (1988) Metabolic and ionic changes in muscle during hemorrhagic shock. Circ Shock 26:341

    PubMed  CAS  Google Scholar 

  6. Chaudry IH (1983) Cellular mechanisms in shock and ischemia and their correction. Am J Physiol 245:R117

    Google Scholar 

  7. Cohen RD, Simpson R (1975) Lactate metabolism. Anesthesiology 43:661

    Article  PubMed  CAS  Google Scholar 

  8. Frayn KN, Little RA, Maycock PF, Stoner HB (1985) The relationship of plasma catecholamines to acute metabolic and hormonal responses to injury in man. Circ Shock 16:229

    PubMed  CAS  Google Scholar 

  9. Hagberg H (1985) Intracellular pH during ischemia in skeletal muscle: relationship to membrane potential extracellular pH, tissue lactic acid and ATP. PflĂĽgers Arch 404:342

    Article  PubMed  CAS  Google Scholar 

  10. Hagberg H, Jennische E, Haljamäe H (1985) Influence of tissue lactic acid and ATP levels on postischemic recovery in rabbit skeletal muscle. Circ Shock 16:363

    PubMed  CAS  Google Scholar 

  11. Haljamäe H (1970) Effects of hemorrhagic shock and treatment with hypothermia on the potassium content and transport of single mammalian skeletal muscle cells. Acta Physiol Scand 78:189

    Article  PubMed  Google Scholar 

  12. Haljamäe H (1970) “Hidden” cellular electrolyte responses to hemorrhagic shock and their significance. Rev Surg 27:315

    PubMed  Google Scholar 

  13. Haljamäe H (1984) Interstitial fluid response. Clin Surg Int 9:44

    Google Scholar 

  14. Haljamäe H (1985) Pathophysiology of shock-induced disturbances in tissue homeostasis. Acta Anaesthesiol Scand [Suppl 82] 29:38

    Article  Google Scholar 

  15. Haljamäe H (1987) Lactate metabolism. Intensive Care World 4:118

    Google Scholar 

  16. Haljamäe H (1988) Organ specific metabolic changes in shock. Prog Clin Biol Res 264:17

    PubMed  Google Scholar 

  17. Haljamäe H (1988) The cell in shock. In: Peter K, Lawin P, Jensen K, Martan E (Hrsg) Shock, Strombahn, Mediatoren, Zelle. Thieme, Stuttgart New York, S 9–21

    Google Scholar 

  18. Haljamäe H, Amundson B, Bagge U, Jennische E, Brånemark P-I (1979) Pathophysiology of shock. Pathol Res Pract 165–200

    Google Scholar 

  19. Järhult J (1973) Osmolar fluid transfer from tissue to blood during hemorrhagic hypotension. Acta Physiol Scand 89:213

    Article  PubMed  Google Scholar 

  20. Jennische E, Enger E, Medegård A, Appelgren L, Haljamäe H (1978) Correlation between tissue pH, cellular transmembrane potentials and cellular energy metabolism during shock and during ischemia. Circ Shock 5:251

    PubMed  CAS  Google Scholar 

  21. Jennische E, Medegård A, Haljamäe H (1978) Transmembrane potential changes as an indicator of cellular metabolic deterioration in skeletal muscle during shock. Eur Surg Res 10:125

    Article  PubMed  CAS  Google Scholar 

  22. Sayeed MM (1987) Ion transport in circulatory and/or septic shock. Am J Physiol 252:R809

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haljamäe, H. (1991). Shock-Induced Disturbances in Cellular Metabolism and Membrane Function. In: Peter, K., Schedl, R., Balogh, D. (eds) Der Schwerstverletzte. Anaesthesiologie und Intensivmedizin / Anaesthesiology and Intensive Care Medicine, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76487-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76487-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53770-0

  • Online ISBN: 978-3-642-76487-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics